Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si
Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing st...
Ausführliche Beschreibung
Autor*in: |
Nagasawa, H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Physics and chemistry of minerals - Springer-Verlag, 1977, 28(2001), 10 vom: Nov., Seite 706-710 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2001 ; number:10 ; month:11 ; pages:706-710 |
Links: |
---|
DOI / URN: |
10.1007/s002690100212 |
---|
Katalog-ID: |
OLC2072363438 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2072363438 | ||
003 | DE-627 | ||
005 | 20230511235521.0 | ||
007 | tu | ||
008 | 200819s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s002690100212 |2 doi | |
035 | |a (DE-627)OLC2072363438 | ||
035 | |a (DE-He213)s002690100212-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 540 |a 530 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Nagasawa, H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2001 | ||
520 | |a Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. | ||
700 | 1 | |a Suzuki, T. |4 aut | |
700 | 1 | |a Ito, M. |4 aut | |
700 | 1 | |a Morioka, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physics and chemistry of minerals |d Springer-Verlag, 1977 |g 28(2001), 10 vom: Nov., Seite 706-710 |w (DE-627)129323039 |w (DE-600)131393-9 |w (DE-576)014557398 |x 0342-1791 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2001 |g number:10 |g month:11 |g pages:706-710 |
856 | 4 | 1 | |u https://doi.org/10.1007/s002690100212 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 28 |j 2001 |e 10 |c 11 |h 706-710 |
author_variant |
h n hn t s ts m i mi m m mm |
---|---|
matchkey_str |
article:03421791:2001----::ifsoisnlcytlfeiienedfu |
hierarchy_sort_str |
2001 |
publishDate |
2001 |
allfields |
10.1007/s002690100212 doi (DE-627)OLC2072363438 (DE-He213)s002690100212-p DE-627 ger DE-627 rakwb eng 550 540 530 VZ BIODIV DE-30 fid Nagasawa, H. verfasserin aut Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. Suzuki, T. aut Ito, M. aut Morioka, M. aut Enthalten in Physics and chemistry of minerals Springer-Verlag, 1977 28(2001), 10 vom: Nov., Seite 706-710 (DE-627)129323039 (DE-600)131393-9 (DE-576)014557398 0342-1791 nnns volume:28 year:2001 number:10 month:11 pages:706-710 https://doi.org/10.1007/s002690100212 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 AR 28 2001 10 11 706-710 |
spelling |
10.1007/s002690100212 doi (DE-627)OLC2072363438 (DE-He213)s002690100212-p DE-627 ger DE-627 rakwb eng 550 540 530 VZ BIODIV DE-30 fid Nagasawa, H. verfasserin aut Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. Suzuki, T. aut Ito, M. aut Morioka, M. aut Enthalten in Physics and chemistry of minerals Springer-Verlag, 1977 28(2001), 10 vom: Nov., Seite 706-710 (DE-627)129323039 (DE-600)131393-9 (DE-576)014557398 0342-1791 nnns volume:28 year:2001 number:10 month:11 pages:706-710 https://doi.org/10.1007/s002690100212 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 AR 28 2001 10 11 706-710 |
allfields_unstemmed |
10.1007/s002690100212 doi (DE-627)OLC2072363438 (DE-He213)s002690100212-p DE-627 ger DE-627 rakwb eng 550 540 530 VZ BIODIV DE-30 fid Nagasawa, H. verfasserin aut Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. Suzuki, T. aut Ito, M. aut Morioka, M. aut Enthalten in Physics and chemistry of minerals Springer-Verlag, 1977 28(2001), 10 vom: Nov., Seite 706-710 (DE-627)129323039 (DE-600)131393-9 (DE-576)014557398 0342-1791 nnns volume:28 year:2001 number:10 month:11 pages:706-710 https://doi.org/10.1007/s002690100212 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 AR 28 2001 10 11 706-710 |
allfieldsGer |
10.1007/s002690100212 doi (DE-627)OLC2072363438 (DE-He213)s002690100212-p DE-627 ger DE-627 rakwb eng 550 540 530 VZ BIODIV DE-30 fid Nagasawa, H. verfasserin aut Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. Suzuki, T. aut Ito, M. aut Morioka, M. aut Enthalten in Physics and chemistry of minerals Springer-Verlag, 1977 28(2001), 10 vom: Nov., Seite 706-710 (DE-627)129323039 (DE-600)131393-9 (DE-576)014557398 0342-1791 nnns volume:28 year:2001 number:10 month:11 pages:706-710 https://doi.org/10.1007/s002690100212 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 AR 28 2001 10 11 706-710 |
allfieldsSound |
10.1007/s002690100212 doi (DE-627)OLC2072363438 (DE-He213)s002690100212-p DE-627 ger DE-627 rakwb eng 550 540 530 VZ BIODIV DE-30 fid Nagasawa, H. verfasserin aut Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. Suzuki, T. aut Ito, M. aut Morioka, M. aut Enthalten in Physics and chemistry of minerals Springer-Verlag, 1977 28(2001), 10 vom: Nov., Seite 706-710 (DE-627)129323039 (DE-600)131393-9 (DE-576)014557398 0342-1791 nnns volume:28 year:2001 number:10 month:11 pages:706-710 https://doi.org/10.1007/s002690100212 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 AR 28 2001 10 11 706-710 |
language |
English |
source |
Enthalten in Physics and chemistry of minerals 28(2001), 10 vom: Nov., Seite 706-710 volume:28 year:2001 number:10 month:11 pages:706-710 |
sourceStr |
Enthalten in Physics and chemistry of minerals 28(2001), 10 vom: Nov., Seite 706-710 volume:28 year:2001 number:10 month:11 pages:706-710 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Physics and chemistry of minerals |
authorswithroles_txt_mv |
Nagasawa, H. @@aut@@ Suzuki, T. @@aut@@ Ito, M. @@aut@@ Morioka, M. @@aut@@ |
publishDateDaySort_date |
2001-11-01T00:00:00Z |
hierarchy_top_id |
129323039 |
dewey-sort |
3550 |
id |
OLC2072363438 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072363438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511235521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002690100212</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072363438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002690100212-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nagasawa, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ito, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morioka, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics and chemistry of minerals</subfield><subfield code="d">Springer-Verlag, 1977</subfield><subfield code="g">28(2001), 10 vom: Nov., Seite 706-710</subfield><subfield code="w">(DE-627)129323039</subfield><subfield code="w">(DE-600)131393-9</subfield><subfield code="w">(DE-576)014557398</subfield><subfield code="x">0342-1791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:10</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:706-710</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002690100212</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2001</subfield><subfield code="e">10</subfield><subfield code="c">11</subfield><subfield code="h">706-710</subfield></datafield></record></collection>
|
author |
Nagasawa, H. |
spellingShingle |
Nagasawa, H. ddc 550 fid BIODIV Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
authorStr |
Nagasawa, H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129323039 |
format |
Article |
dewey-ones |
550 - Earth sciences 540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0342-1791 |
topic_title |
550 540 530 VZ BIODIV DE-30 fid Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
topic |
ddc 550 fid BIODIV |
topic_unstemmed |
ddc 550 fid BIODIV |
topic_browse |
ddc 550 fid BIODIV |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Physics and chemistry of minerals |
hierarchy_parent_id |
129323039 |
dewey-tens |
550 - Earth sciences & geology 540 - Chemistry 530 - Physics |
hierarchy_top_title |
Physics and chemistry of minerals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129323039 (DE-600)131393-9 (DE-576)014557398 |
title |
Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
ctrlnum |
(DE-627)OLC2072363438 (DE-He213)s002690100212-p |
title_full |
Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
author_sort |
Nagasawa, H. |
journal |
Physics and chemistry of minerals |
journalStr |
Physics and chemistry of minerals |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
706 |
author_browse |
Nagasawa, H. Suzuki, T. Ito, M. Morioka, M. |
container_volume |
28 |
class |
550 540 530 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Nagasawa, H. |
doi_str_mv |
10.1007/s002690100212 |
dewey-full |
550 540 530 |
title_sort |
diffusion in single crystal of melilite: interdiffusion of al + al vs. mg + si |
title_auth |
Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
abstract |
Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. © Springer-Verlag Berlin Heidelberg 2001 |
abstractGer |
Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. © Springer-Verlag Berlin Heidelberg 2001 |
abstract_unstemmed |
Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions. © Springer-Verlag Berlin Heidelberg 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-GEO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-GGO GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2027 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 |
container_issue |
10 |
title_short |
Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si |
url |
https://doi.org/10.1007/s002690100212 |
remote_bool |
false |
author2 |
Suzuki, T. Ito, M. Morioka, M. |
author2Str |
Suzuki, T. Ito, M. Morioka, M. |
ppnlink |
129323039 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s002690100212 |
up_date |
2024-07-03T14:41:59.708Z |
_version_ |
1803569300464730112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072363438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511235521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002690100212</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072363438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002690100212-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nagasawa, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion in single crystal of melilite: interdiffusion of Al + Al vs. Mg + Si</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × $ 10^{−13} $ $ cm^{2} $ $ s^{−1} $ at 5 mol% åkermanite composition ($ Ak_{5} $), increases to 2 × $ 10^{−11} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{80} $, and then decreases to 1 × $ 10^{−12} $ $ cm^{2} $ $ s^{−1} $ at $ Ak_{95} $. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ $ mol^{−1} $ for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ito, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morioka, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics and chemistry of minerals</subfield><subfield code="d">Springer-Verlag, 1977</subfield><subfield code="g">28(2001), 10 vom: Nov., Seite 706-710</subfield><subfield code="w">(DE-627)129323039</subfield><subfield code="w">(DE-600)131393-9</subfield><subfield code="w">(DE-576)014557398</subfield><subfield code="x">0342-1791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:10</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:706-710</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002690100212</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2001</subfield><subfield code="e">10</subfield><subfield code="c">11</subfield><subfield code="h">706-710</subfield></datafield></record></collection>
|
score |
7.401005 |