Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation
Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anoma...
Ausführliche Beschreibung
Autor*in: |
Gao, Yingxia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Climate dynamics - Springer Berlin Heidelberg, 1986, 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2020 ; number:9-10 ; day:18 ; month:04 ; pages:4485-4498 |
Links: |
---|
DOI / URN: |
10.1007/s00382-020-05239-w |
---|
Katalog-ID: |
OLC2072631440 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2072631440 | ||
003 | DE-627 | ||
005 | 20230504150321.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00382-020-05239-w |2 doi | |
035 | |a (DE-627)OLC2072631440 | ||
035 | |a (DE-He213)s00382-020-05239-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Gao, Yingxia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2020 | ||
520 | |a Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. | ||
650 | 4 | |a Scale interaction | |
650 | 4 | |a Air–sea interaction | |
650 | 4 | |a Madden-Julian oscillation | |
650 | 4 | |a High-frequency wind | |
650 | 4 | |a Sea surface temperature | |
700 | 1 | |a Hsu, Pang-Chi |0 (orcid)0000-0003-3363-7967 |4 aut | |
700 | 1 | |a Chen, Lin |4 aut | |
700 | 1 | |a Wang, Lu |4 aut | |
700 | 1 | |a Li, Tim |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Climate dynamics |d Springer Berlin Heidelberg, 1986 |g 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 |w (DE-627)129932728 |w (DE-600)382992-3 |w (DE-576)015479005 |x 0930-7575 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2020 |g number:9-10 |g day:18 |g month:04 |g pages:4485-4498 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00382-020-05239-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 54 |j 2020 |e 9-10 |b 18 |c 04 |h 4485-4498 |
author_variant |
y g yg p c h pch l c lc l w lw t l tl |
---|---|
matchkey_str |
article:09307575:2020----::fetohgfeunyufcwnotenrsaoastsoitdih |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00382-020-05239-w doi (DE-627)OLC2072631440 (DE-He213)s00382-020-05239-w-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Gao, Yingxia verfasserin aut Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature Hsu, Pang-Chi (orcid)0000-0003-3363-7967 aut Chen, Lin aut Wang, Lu aut Li, Tim aut Enthalten in Climate dynamics Springer Berlin Heidelberg, 1986 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 (DE-627)129932728 (DE-600)382992-3 (DE-576)015479005 0930-7575 nnns volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 https://doi.org/10.1007/s00382-020-05239-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 GBV_ILN_2018 GBV_ILN_4277 AR 54 2020 9-10 18 04 4485-4498 |
spelling |
10.1007/s00382-020-05239-w doi (DE-627)OLC2072631440 (DE-He213)s00382-020-05239-w-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Gao, Yingxia verfasserin aut Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature Hsu, Pang-Chi (orcid)0000-0003-3363-7967 aut Chen, Lin aut Wang, Lu aut Li, Tim aut Enthalten in Climate dynamics Springer Berlin Heidelberg, 1986 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 (DE-627)129932728 (DE-600)382992-3 (DE-576)015479005 0930-7575 nnns volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 https://doi.org/10.1007/s00382-020-05239-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 GBV_ILN_2018 GBV_ILN_4277 AR 54 2020 9-10 18 04 4485-4498 |
allfields_unstemmed |
10.1007/s00382-020-05239-w doi (DE-627)OLC2072631440 (DE-He213)s00382-020-05239-w-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Gao, Yingxia verfasserin aut Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature Hsu, Pang-Chi (orcid)0000-0003-3363-7967 aut Chen, Lin aut Wang, Lu aut Li, Tim aut Enthalten in Climate dynamics Springer Berlin Heidelberg, 1986 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 (DE-627)129932728 (DE-600)382992-3 (DE-576)015479005 0930-7575 nnns volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 https://doi.org/10.1007/s00382-020-05239-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 GBV_ILN_2018 GBV_ILN_4277 AR 54 2020 9-10 18 04 4485-4498 |
allfieldsGer |
10.1007/s00382-020-05239-w doi (DE-627)OLC2072631440 (DE-He213)s00382-020-05239-w-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Gao, Yingxia verfasserin aut Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature Hsu, Pang-Chi (orcid)0000-0003-3363-7967 aut Chen, Lin aut Wang, Lu aut Li, Tim aut Enthalten in Climate dynamics Springer Berlin Heidelberg, 1986 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 (DE-627)129932728 (DE-600)382992-3 (DE-576)015479005 0930-7575 nnns volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 https://doi.org/10.1007/s00382-020-05239-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 GBV_ILN_2018 GBV_ILN_4277 AR 54 2020 9-10 18 04 4485-4498 |
allfieldsSound |
10.1007/s00382-020-05239-w doi (DE-627)OLC2072631440 (DE-He213)s00382-020-05239-w-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 16,13 ssgn Gao, Yingxia verfasserin aut Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature Hsu, Pang-Chi (orcid)0000-0003-3363-7967 aut Chen, Lin aut Wang, Lu aut Li, Tim aut Enthalten in Climate dynamics Springer Berlin Heidelberg, 1986 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 (DE-627)129932728 (DE-600)382992-3 (DE-576)015479005 0930-7575 nnns volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 https://doi.org/10.1007/s00382-020-05239-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 GBV_ILN_2018 GBV_ILN_4277 AR 54 2020 9-10 18 04 4485-4498 |
language |
English |
source |
Enthalten in Climate dynamics 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 |
sourceStr |
Enthalten in Climate dynamics 54(2020), 9-10 vom: 18. Apr., Seite 4485-4498 volume:54 year:2020 number:9-10 day:18 month:04 pages:4485-4498 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Climate dynamics |
authorswithroles_txt_mv |
Gao, Yingxia @@aut@@ Hsu, Pang-Chi @@aut@@ Chen, Lin @@aut@@ Wang, Lu @@aut@@ Li, Tim @@aut@@ |
publishDateDaySort_date |
2020-04-18T00:00:00Z |
hierarchy_top_id |
129932728 |
dewey-sort |
3550 |
id |
OLC2072631440 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072631440</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504150321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00382-020-05239-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072631440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00382-020-05239-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Yingxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–sea interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Madden-Julian oscillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-frequency wind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Pang-Chi</subfield><subfield code="0">(orcid)0000-0003-3363-7967</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climate dynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">54(2020), 9-10 vom: 18. Apr., Seite 4485-4498</subfield><subfield code="w">(DE-627)129932728</subfield><subfield code="w">(DE-600)382992-3</subfield><subfield code="w">(DE-576)015479005</subfield><subfield code="x">0930-7575</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9-10</subfield><subfield code="g">day:18</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4485-4498</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00382-020-05239-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2020</subfield><subfield code="e">9-10</subfield><subfield code="b">18</subfield><subfield code="c">04</subfield><subfield code="h">4485-4498</subfield></datafield></record></collection>
|
author |
Gao, Yingxia |
spellingShingle |
Gao, Yingxia ddc 550 ssgn 16,13 misc Scale interaction misc Air–sea interaction misc Madden-Julian oscillation misc High-frequency wind misc Sea surface temperature Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation |
authorStr |
Gao, Yingxia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129932728 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0930-7575 |
topic_title |
550 VZ 16,13 ssgn Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation Scale interaction Air–sea interaction Madden-Julian oscillation High-frequency wind Sea surface temperature |
topic |
ddc 550 ssgn 16,13 misc Scale interaction misc Air–sea interaction misc Madden-Julian oscillation misc High-frequency wind misc Sea surface temperature |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Scale interaction misc Air–sea interaction misc Madden-Julian oscillation misc High-frequency wind misc Sea surface temperature |
topic_browse |
ddc 550 ssgn 16,13 misc Scale interaction misc Air–sea interaction misc Madden-Julian oscillation misc High-frequency wind misc Sea surface temperature |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Climate dynamics |
hierarchy_parent_id |
129932728 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Climate dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129932728 (DE-600)382992-3 (DE-576)015479005 |
title |
Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation |
ctrlnum |
(DE-627)OLC2072631440 (DE-He213)s00382-020-05239-w-p |
title_full |
Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation |
author_sort |
Gao, Yingxia |
journal |
Climate dynamics |
journalStr |
Climate dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
4485 |
author_browse |
Gao, Yingxia Hsu, Pang-Chi Chen, Lin Wang, Lu Li, Tim |
container_volume |
54 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Gao, Yingxia |
doi_str_mv |
10.1007/s00382-020-05239-w |
normlink |
(ORCID)0000-0003-3363-7967 |
normlink_prefix_str_mv |
(orcid)0000-0003-3363-7967 |
dewey-full |
550 |
title_sort |
effects of high-frequency surface wind on the intraseasonal sst associated with the madden-julian oscillation |
title_auth |
Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation |
abstract |
Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstractGer |
Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
9-10 |
title_short |
Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation |
url |
https://doi.org/10.1007/s00382-020-05239-w |
remote_bool |
false |
author2 |
Hsu, Pang-Chi Chen, Lin Wang, Lu Li, Tim |
author2Str |
Hsu, Pang-Chi Chen, Lin Wang, Lu Li, Tim |
ppnlink |
129932728 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00382-020-05239-w |
up_date |
2024-07-03T15:37:06.096Z |
_version_ |
1803572767462785024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072631440</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504150321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00382-020-05239-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072631440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00382-020-05239-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, Yingxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of high-frequency (< 20 days) wind on the intraseasonal sea surface temperature (SST) anomaly associated with the Madden-Julian oscillation (MJO) is examined by diagnosing reanalysis and outputs from a set of oceanic general circulation model (OGCM) experiments. Warm SST anomaly (SSTA) ahead of MJO convective center induces anomalous boundary-layer convergence, favoring the eastward propagation of the MJO. To understand the key physical processes contributing to the warm SSTA, the mixed-layer heat budget equation is diagnosed. The time change of SSTA ($$\partial \left\langle T \right\rangle /\partial t$$) mostly comes from shortwave radiative heating, while latent heat flux (LHF) plays the secondary role. Due to the strong nonlinearity of LHF, the high-frequency (< 20 days) wind may affect the intraseasonal LHF variability via interacting with the background state, resulting in changes in intraseasonal SSTA. Our diagnosis shows that the upscale feedback associated with high-frequency wind variability accounts for around 23% of the intraseasonal LHF in the intraseasonal SST warming region, supporting the growth of $$\partial \left\langle T \right\rangle /\partial t$$. Sensitivity experiments are then designed using an OGCM that simulates the upper-ocean temperature well, to verify the high-frequency wind effect on the intraseasonal SST variability. Once the high-frequency component of surface winds is removed in the model integration, the amplitudes of intraseasonal LHF and $$\partial \left\langle T \right\rangle /\partial t$$ are decreased, leading to reduced SSTA. The modeling results confirm the positive role of high-frequency wind in supporting the tropical intraseasonal SST variation. The findings of this study suggest that an accurate representation of high-frequency disturbances and their interaction with other components are crucial for MJO simulation and prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air–sea interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Madden-Julian oscillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-frequency wind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Pang-Chi</subfield><subfield code="0">(orcid)0000-0003-3363-7967</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Climate dynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">54(2020), 9-10 vom: 18. Apr., Seite 4485-4498</subfield><subfield code="w">(DE-627)129932728</subfield><subfield code="w">(DE-600)382992-3</subfield><subfield code="w">(DE-576)015479005</subfield><subfield code="x">0930-7575</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9-10</subfield><subfield code="g">day:18</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4485-4498</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00382-020-05239-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2020</subfield><subfield code="e">9-10</subfield><subfield code="b">18</subfield><subfield code="c">04</subfield><subfield code="h">4485-4498</subfield></datafield></record></collection>
|
score |
7.401374 |