A recursive quadratic programming algorithm for semi-infinite optimization problems
Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme...
Ausführliche Beschreibung
Autor*in: |
Polak, E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1982 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag New York Inc. 1982 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics & optimization - Springer-Verlag, 1974, 8(1982), 1 vom: Jan., Seite 325-349 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:1982 ; number:1 ; month:01 ; pages:325-349 |
Links: |
---|
DOI / URN: |
10.1007/BF01447767 |
---|
Katalog-ID: |
OLC207263380X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207263380X | ||
003 | DE-627 | ||
005 | 20230324041007.0 | ||
007 | tu | ||
008 | 200819s1982 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01447767 |2 doi | |
035 | |a (DE-627)OLC207263380X | ||
035 | |a (DE-He213)BF01447767-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Polak, E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A recursive quadratic programming algorithm for semi-infinite optimization problems |
264 | 1 | |c 1982 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag New York Inc. 1982 | ||
520 | |a Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. | ||
650 | 4 | |a System Theory | |
650 | 4 | |a Mathematical Method | |
650 | 4 | |a Real Line | |
650 | 4 | |a Quadratic Programming | |
650 | 4 | |a Programming Algorithm | |
700 | 1 | |a Tits, A. L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics & optimization |d Springer-Verlag, 1974 |g 8(1982), 1 vom: Jan., Seite 325-349 |w (DE-627)129095184 |w (DE-600)7418-4 |w (DE-576)014431300 |x 0095-4616 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:1982 |g number:1 |g month:01 |g pages:325-349 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01447767 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 1982 |e 1 |c 01 |h 325-349 |
author_variant |
e p ep a l t al alt |
---|---|
matchkey_str |
article:00954616:1982----::rcrieudaipormigloihfreiniie |
hierarchy_sort_str |
1982 |
publishDate |
1982 |
allfields |
10.1007/BF01447767 doi (DE-627)OLC207263380X (DE-He213)BF01447767-p DE-627 ger DE-627 rakwb eng 510 VZ Polak, E. verfasserin aut A recursive quadratic programming algorithm for semi-infinite optimization problems 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1982 Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm Tits, A. L. aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 8(1982), 1 vom: Jan., Seite 325-349 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:8 year:1982 number:1 month:01 pages:325-349 https://doi.org/10.1007/BF01447767 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 8 1982 1 01 325-349 |
spelling |
10.1007/BF01447767 doi (DE-627)OLC207263380X (DE-He213)BF01447767-p DE-627 ger DE-627 rakwb eng 510 VZ Polak, E. verfasserin aut A recursive quadratic programming algorithm for semi-infinite optimization problems 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1982 Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm Tits, A. L. aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 8(1982), 1 vom: Jan., Seite 325-349 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:8 year:1982 number:1 month:01 pages:325-349 https://doi.org/10.1007/BF01447767 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 8 1982 1 01 325-349 |
allfields_unstemmed |
10.1007/BF01447767 doi (DE-627)OLC207263380X (DE-He213)BF01447767-p DE-627 ger DE-627 rakwb eng 510 VZ Polak, E. verfasserin aut A recursive quadratic programming algorithm for semi-infinite optimization problems 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1982 Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm Tits, A. L. aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 8(1982), 1 vom: Jan., Seite 325-349 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:8 year:1982 number:1 month:01 pages:325-349 https://doi.org/10.1007/BF01447767 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 8 1982 1 01 325-349 |
allfieldsGer |
10.1007/BF01447767 doi (DE-627)OLC207263380X (DE-He213)BF01447767-p DE-627 ger DE-627 rakwb eng 510 VZ Polak, E. verfasserin aut A recursive quadratic programming algorithm for semi-infinite optimization problems 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1982 Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm Tits, A. L. aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 8(1982), 1 vom: Jan., Seite 325-349 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:8 year:1982 number:1 month:01 pages:325-349 https://doi.org/10.1007/BF01447767 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 8 1982 1 01 325-349 |
allfieldsSound |
10.1007/BF01447767 doi (DE-627)OLC207263380X (DE-He213)BF01447767-p DE-627 ger DE-627 rakwb eng 510 VZ Polak, E. verfasserin aut A recursive quadratic programming algorithm for semi-infinite optimization problems 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag New York Inc. 1982 Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm Tits, A. L. aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 8(1982), 1 vom: Jan., Seite 325-349 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:8 year:1982 number:1 month:01 pages:325-349 https://doi.org/10.1007/BF01447767 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 8 1982 1 01 325-349 |
language |
English |
source |
Enthalten in Applied mathematics & optimization 8(1982), 1 vom: Jan., Seite 325-349 volume:8 year:1982 number:1 month:01 pages:325-349 |
sourceStr |
Enthalten in Applied mathematics & optimization 8(1982), 1 vom: Jan., Seite 325-349 volume:8 year:1982 number:1 month:01 pages:325-349 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics & optimization |
authorswithroles_txt_mv |
Polak, E. @@aut@@ Tits, A. L. @@aut@@ |
publishDateDaySort_date |
1982-01-01T00:00:00Z |
hierarchy_top_id |
129095184 |
dewey-sort |
3510 |
id |
OLC207263380X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207263380X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324041007.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01447767</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207263380X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01447767-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Polak, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A recursive quadratic programming algorithm for semi-infinite optimization problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratic Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming Algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tits, A. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer-Verlag, 1974</subfield><subfield code="g">8(1982), 1 vom: Jan., Seite 325-349</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:325-349</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01447767</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1982</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">325-349</subfield></datafield></record></collection>
|
author |
Polak, E. |
spellingShingle |
Polak, E. ddc 510 misc System Theory misc Mathematical Method misc Real Line misc Quadratic Programming misc Programming Algorithm A recursive quadratic programming algorithm for semi-infinite optimization problems |
authorStr |
Polak, E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095184 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0095-4616 |
topic_title |
510 VZ A recursive quadratic programming algorithm for semi-infinite optimization problems System Theory Mathematical Method Real Line Quadratic Programming Programming Algorithm |
topic |
ddc 510 misc System Theory misc Mathematical Method misc Real Line misc Quadratic Programming misc Programming Algorithm |
topic_unstemmed |
ddc 510 misc System Theory misc Mathematical Method misc Real Line misc Quadratic Programming misc Programming Algorithm |
topic_browse |
ddc 510 misc System Theory misc Mathematical Method misc Real Line misc Quadratic Programming misc Programming Algorithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied mathematics & optimization |
hierarchy_parent_id |
129095184 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics & optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 |
title |
A recursive quadratic programming algorithm for semi-infinite optimization problems |
ctrlnum |
(DE-627)OLC207263380X (DE-He213)BF01447767-p |
title_full |
A recursive quadratic programming algorithm for semi-infinite optimization problems |
author_sort |
Polak, E. |
journal |
Applied mathematics & optimization |
journalStr |
Applied mathematics & optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1982 |
contenttype_str_mv |
txt |
container_start_page |
325 |
author_browse |
Polak, E. Tits, A. L. |
container_volume |
8 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Polak, E. |
doi_str_mv |
10.1007/BF01447767 |
dewey-full |
510 |
title_sort |
a recursive quadratic programming algorithm for semi-infinite optimization problems |
title_auth |
A recursive quadratic programming algorithm for semi-infinite optimization problems |
abstract |
Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. © Springer-Verlag New York Inc. 1982 |
abstractGer |
Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. © Springer-Verlag New York Inc. 1982 |
abstract_unstemmed |
Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically. © Springer-Verlag New York Inc. 1982 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A recursive quadratic programming algorithm for semi-infinite optimization problems |
url |
https://doi.org/10.1007/BF01447767 |
remote_bool |
false |
author2 |
Tits, A. L. |
author2Str |
Tits, A. L. |
ppnlink |
129095184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01447767 |
up_date |
2024-07-03T15:37:39.379Z |
_version_ |
1803572802361491456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207263380X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324041007.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01447767</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207263380X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01447767-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Polak, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A recursive quadratic programming algorithm for semi-infinite optimization problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag New York Inc. 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The well known, local recursive quadratic programming method introduced by E. R. Wilson is extended to apply to optimization problems with constraints of the type$$\mathop {\max }\limits_\omega \phi (x,\omega ) \leqslant 0$$, whereω ranges over a compact interval of the real line. A scheme is proposed, which results in a globally convergent conceptual algorithm. Finally, two implementable versions are presented both of which converge quadratically.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratic Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming Algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tits, A. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer-Verlag, 1974</subfield><subfield code="g">8(1982), 1 vom: Jan., Seite 325-349</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:325-349</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01447767</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1982</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">325-349</subfield></datafield></record></collection>
|
score |
7.4027634 |