A Maximum Principle for SDEs of Mean-Field Type
Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control probl...
Ausführliche Beschreibung
Autor*in: |
Andersson, Daniel [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics & optimization - Springer-Verlag, 1974, 63(2010), 3 vom: 30. Okt., Seite 341-356 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2010 ; number:3 ; day:30 ; month:10 ; pages:341-356 |
Links: |
---|
DOI / URN: |
10.1007/s00245-010-9123-8 |
---|
Katalog-ID: |
OLC2072642612 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2072642612 | ||
003 | DE-627 | ||
005 | 20230324041532.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00245-010-9123-8 |2 doi | |
035 | |a (DE-627)OLC2072642612 | ||
035 | |a (DE-He213)s00245-010-9123-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Andersson, Daniel |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Maximum Principle for SDEs of Mean-Field Type |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2010 | ||
520 | |a Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. | ||
650 | 4 | |a Stochastic control | |
650 | 4 | |a Maximum principle | |
650 | 4 | |a Mean-field SDE | |
650 | 4 | |a McKean-Vlasov equation | |
650 | 4 | |a Time inconsistent control | |
700 | 1 | |a Djehiche, Boualem |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics & optimization |d Springer-Verlag, 1974 |g 63(2010), 3 vom: 30. Okt., Seite 341-356 |w (DE-627)129095184 |w (DE-600)7418-4 |w (DE-576)014431300 |x 0095-4616 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2010 |g number:3 |g day:30 |g month:10 |g pages:341-356 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00245-010-9123-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 63 |j 2010 |e 3 |b 30 |c 10 |h 341-356 |
author_variant |
d a da b d bd |
---|---|
matchkey_str |
article:00954616:2010----::mxmmrnilfrdsf |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00245-010-9123-8 doi (DE-627)OLC2072642612 (DE-He213)s00245-010-9123-8-p DE-627 ger DE-627 rakwb eng 510 VZ Andersson, Daniel verfasserin aut A Maximum Principle for SDEs of Mean-Field Type 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control Djehiche, Boualem aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 63(2010), 3 vom: 30. Okt., Seite 341-356 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:63 year:2010 number:3 day:30 month:10 pages:341-356 https://doi.org/10.1007/s00245-010-9123-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 63 2010 3 30 10 341-356 |
spelling |
10.1007/s00245-010-9123-8 doi (DE-627)OLC2072642612 (DE-He213)s00245-010-9123-8-p DE-627 ger DE-627 rakwb eng 510 VZ Andersson, Daniel verfasserin aut A Maximum Principle for SDEs of Mean-Field Type 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control Djehiche, Boualem aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 63(2010), 3 vom: 30. Okt., Seite 341-356 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:63 year:2010 number:3 day:30 month:10 pages:341-356 https://doi.org/10.1007/s00245-010-9123-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 63 2010 3 30 10 341-356 |
allfields_unstemmed |
10.1007/s00245-010-9123-8 doi (DE-627)OLC2072642612 (DE-He213)s00245-010-9123-8-p DE-627 ger DE-627 rakwb eng 510 VZ Andersson, Daniel verfasserin aut A Maximum Principle for SDEs of Mean-Field Type 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control Djehiche, Boualem aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 63(2010), 3 vom: 30. Okt., Seite 341-356 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:63 year:2010 number:3 day:30 month:10 pages:341-356 https://doi.org/10.1007/s00245-010-9123-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 63 2010 3 30 10 341-356 |
allfieldsGer |
10.1007/s00245-010-9123-8 doi (DE-627)OLC2072642612 (DE-He213)s00245-010-9123-8-p DE-627 ger DE-627 rakwb eng 510 VZ Andersson, Daniel verfasserin aut A Maximum Principle for SDEs of Mean-Field Type 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control Djehiche, Boualem aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 63(2010), 3 vom: 30. Okt., Seite 341-356 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:63 year:2010 number:3 day:30 month:10 pages:341-356 https://doi.org/10.1007/s00245-010-9123-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 63 2010 3 30 10 341-356 |
allfieldsSound |
10.1007/s00245-010-9123-8 doi (DE-627)OLC2072642612 (DE-He213)s00245-010-9123-8-p DE-627 ger DE-627 rakwb eng 510 VZ Andersson, Daniel verfasserin aut A Maximum Principle for SDEs of Mean-Field Type 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control Djehiche, Boualem aut Enthalten in Applied mathematics & optimization Springer-Verlag, 1974 63(2010), 3 vom: 30. Okt., Seite 341-356 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:63 year:2010 number:3 day:30 month:10 pages:341-356 https://doi.org/10.1007/s00245-010-9123-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 AR 63 2010 3 30 10 341-356 |
language |
English |
source |
Enthalten in Applied mathematics & optimization 63(2010), 3 vom: 30. Okt., Seite 341-356 volume:63 year:2010 number:3 day:30 month:10 pages:341-356 |
sourceStr |
Enthalten in Applied mathematics & optimization 63(2010), 3 vom: 30. Okt., Seite 341-356 volume:63 year:2010 number:3 day:30 month:10 pages:341-356 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics & optimization |
authorswithroles_txt_mv |
Andersson, Daniel @@aut@@ Djehiche, Boualem @@aut@@ |
publishDateDaySort_date |
2010-10-30T00:00:00Z |
hierarchy_top_id |
129095184 |
dewey-sort |
3510 |
id |
OLC2072642612 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072642612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324041532.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00245-010-9123-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072642612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00245-010-9123-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andersson, Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Maximum Principle for SDEs of Mean-Field Type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean-field SDE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">McKean-Vlasov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time inconsistent control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Djehiche, Boualem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer-Verlag, 1974</subfield><subfield code="g">63(2010), 3 vom: 30. Okt., Seite 341-356</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:341-356</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00245-010-9123-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">341-356</subfield></datafield></record></collection>
|
author |
Andersson, Daniel |
spellingShingle |
Andersson, Daniel ddc 510 misc Stochastic control misc Maximum principle misc Mean-field SDE misc McKean-Vlasov equation misc Time inconsistent control A Maximum Principle for SDEs of Mean-Field Type |
authorStr |
Andersson, Daniel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095184 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0095-4616 |
topic_title |
510 VZ A Maximum Principle for SDEs of Mean-Field Type Stochastic control Maximum principle Mean-field SDE McKean-Vlasov equation Time inconsistent control |
topic |
ddc 510 misc Stochastic control misc Maximum principle misc Mean-field SDE misc McKean-Vlasov equation misc Time inconsistent control |
topic_unstemmed |
ddc 510 misc Stochastic control misc Maximum principle misc Mean-field SDE misc McKean-Vlasov equation misc Time inconsistent control |
topic_browse |
ddc 510 misc Stochastic control misc Maximum principle misc Mean-field SDE misc McKean-Vlasov equation misc Time inconsistent control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied mathematics & optimization |
hierarchy_parent_id |
129095184 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics & optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 |
title |
A Maximum Principle for SDEs of Mean-Field Type |
ctrlnum |
(DE-627)OLC2072642612 (DE-He213)s00245-010-9123-8-p |
title_full |
A Maximum Principle for SDEs of Mean-Field Type |
author_sort |
Andersson, Daniel |
journal |
Applied mathematics & optimization |
journalStr |
Applied mathematics & optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
341 |
author_browse |
Andersson, Daniel Djehiche, Boualem |
container_volume |
63 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Andersson, Daniel |
doi_str_mv |
10.1007/s00245-010-9123-8 |
dewey-full |
510 |
title_sort |
a maximum principle for sdes of mean-field type |
title_auth |
A Maximum Principle for SDEs of Mean-Field Type |
abstract |
Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. © Springer Science+Business Media, LLC 2010 |
abstractGer |
Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. © Springer Science+Business Media, LLC 2010 |
abstract_unstemmed |
Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem. © Springer Science+Business Media, LLC 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_60 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
3 |
title_short |
A Maximum Principle for SDEs of Mean-Field Type |
url |
https://doi.org/10.1007/s00245-010-9123-8 |
remote_bool |
false |
author2 |
Djehiche, Boualem |
author2Str |
Djehiche, Boualem |
ppnlink |
129095184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00245-010-9123-8 |
up_date |
2024-07-03T15:39:38.197Z |
_version_ |
1803572926950146048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072642612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324041532.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00245-010-9123-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072642612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00245-010-9123-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andersson, Daniel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Maximum Principle for SDEs of Mean-Field Type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean-field SDE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">McKean-Vlasov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time inconsistent control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Djehiche, Boualem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer-Verlag, 1974</subfield><subfield code="g">63(2010), 3 vom: 30. Okt., Seite 341-356</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:341-356</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00245-010-9123-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">341-356</subfield></datafield></record></collection>
|
score |
7.400899 |