Optimal Control of the Multiphase Stefan Problem
Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria...
Ausführliche Beschreibung
Autor*in: |
Abdulla, Ugur G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Inverse multiphase Stefan problem Parabolic free boundary problem |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics & optimization - Springer US, 1974, 80(2018), 2 vom: 03. Jan., Seite 479-513 |
---|---|
Übergeordnetes Werk: |
volume:80 ; year:2018 ; number:2 ; day:03 ; month:01 ; pages:479-513 |
Links: |
---|
DOI / URN: |
10.1007/s00245-017-9472-7 |
---|
Katalog-ID: |
OLC207264593X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207264593X | ||
003 | DE-627 | ||
005 | 20230324042055.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00245-017-9472-7 |2 doi | |
035 | |a (DE-627)OLC207264593X | ||
035 | |a (DE-He213)s00245-017-9472-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Abdulla, Ugur G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimal Control of the Multiphase Stefan Problem |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. | ||
650 | 4 | |a Inverse multiphase Stefan problem | |
650 | 4 | |a Optimal control | |
650 | 4 | |a Parabolic free boundary problem | |
650 | 4 | |a Method of finite differences | |
650 | 4 | |a Discrete optimal Stefan problem | |
650 | 4 | |a Convergence in functional and control | |
700 | 1 | |a Poggi, Bruno |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics & optimization |d Springer US, 1974 |g 80(2018), 2 vom: 03. Jan., Seite 479-513 |w (DE-627)129095184 |w (DE-600)7418-4 |w (DE-576)014431300 |x 0095-4616 |7 nnns |
773 | 1 | 8 | |g volume:80 |g year:2018 |g number:2 |g day:03 |g month:01 |g pages:479-513 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00245-017-9472-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 80 |j 2018 |e 2 |b 03 |c 01 |h 479-513 |
author_variant |
u g a ug uga b p bp |
---|---|
matchkey_str |
article:00954616:2018----::piacnrlfhmlihss |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00245-017-9472-7 doi (DE-627)OLC207264593X (DE-He213)s00245-017-9472-7-p DE-627 ger DE-627 rakwb eng 510 VZ Abdulla, Ugur G. verfasserin aut Optimal Control of the Multiphase Stefan Problem 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control Poggi, Bruno aut Enthalten in Applied mathematics & optimization Springer US, 1974 80(2018), 2 vom: 03. Jan., Seite 479-513 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:80 year:2018 number:2 day:03 month:01 pages:479-513 https://doi.org/10.1007/s00245-017-9472-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4323 AR 80 2018 2 03 01 479-513 |
spelling |
10.1007/s00245-017-9472-7 doi (DE-627)OLC207264593X (DE-He213)s00245-017-9472-7-p DE-627 ger DE-627 rakwb eng 510 VZ Abdulla, Ugur G. verfasserin aut Optimal Control of the Multiphase Stefan Problem 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control Poggi, Bruno aut Enthalten in Applied mathematics & optimization Springer US, 1974 80(2018), 2 vom: 03. Jan., Seite 479-513 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:80 year:2018 number:2 day:03 month:01 pages:479-513 https://doi.org/10.1007/s00245-017-9472-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4323 AR 80 2018 2 03 01 479-513 |
allfields_unstemmed |
10.1007/s00245-017-9472-7 doi (DE-627)OLC207264593X (DE-He213)s00245-017-9472-7-p DE-627 ger DE-627 rakwb eng 510 VZ Abdulla, Ugur G. verfasserin aut Optimal Control of the Multiphase Stefan Problem 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control Poggi, Bruno aut Enthalten in Applied mathematics & optimization Springer US, 1974 80(2018), 2 vom: 03. Jan., Seite 479-513 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:80 year:2018 number:2 day:03 month:01 pages:479-513 https://doi.org/10.1007/s00245-017-9472-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4323 AR 80 2018 2 03 01 479-513 |
allfieldsGer |
10.1007/s00245-017-9472-7 doi (DE-627)OLC207264593X (DE-He213)s00245-017-9472-7-p DE-627 ger DE-627 rakwb eng 510 VZ Abdulla, Ugur G. verfasserin aut Optimal Control of the Multiphase Stefan Problem 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control Poggi, Bruno aut Enthalten in Applied mathematics & optimization Springer US, 1974 80(2018), 2 vom: 03. Jan., Seite 479-513 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:80 year:2018 number:2 day:03 month:01 pages:479-513 https://doi.org/10.1007/s00245-017-9472-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4323 AR 80 2018 2 03 01 479-513 |
allfieldsSound |
10.1007/s00245-017-9472-7 doi (DE-627)OLC207264593X (DE-He213)s00245-017-9472-7-p DE-627 ger DE-627 rakwb eng 510 VZ Abdulla, Ugur G. verfasserin aut Optimal Control of the Multiphase Stefan Problem 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control Poggi, Bruno aut Enthalten in Applied mathematics & optimization Springer US, 1974 80(2018), 2 vom: 03. Jan., Seite 479-513 (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:80 year:2018 number:2 day:03 month:01 pages:479-513 https://doi.org/10.1007/s00245-017-9472-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4323 AR 80 2018 2 03 01 479-513 |
language |
English |
source |
Enthalten in Applied mathematics & optimization 80(2018), 2 vom: 03. Jan., Seite 479-513 volume:80 year:2018 number:2 day:03 month:01 pages:479-513 |
sourceStr |
Enthalten in Applied mathematics & optimization 80(2018), 2 vom: 03. Jan., Seite 479-513 volume:80 year:2018 number:2 day:03 month:01 pages:479-513 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics & optimization |
authorswithroles_txt_mv |
Abdulla, Ugur G. @@aut@@ Poggi, Bruno @@aut@@ |
publishDateDaySort_date |
2018-01-03T00:00:00Z |
hierarchy_top_id |
129095184 |
dewey-sort |
3510 |
id |
OLC207264593X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207264593X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324042055.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00245-017-9472-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207264593X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00245-017-9472-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abdulla, Ugur G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal Control of the Multiphase Stefan Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse multiphase Stefan problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic free boundary problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of finite differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete optimal Stefan problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence in functional and control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poggi, Bruno</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer US, 1974</subfield><subfield code="g">80(2018), 2 vom: 03. Jan., Seite 479-513</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:479-513</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00245-017-9472-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield><subfield code="h">479-513</subfield></datafield></record></collection>
|
author |
Abdulla, Ugur G. |
spellingShingle |
Abdulla, Ugur G. ddc 510 misc Inverse multiphase Stefan problem misc Optimal control misc Parabolic free boundary problem misc Method of finite differences misc Discrete optimal Stefan problem misc Convergence in functional and control Optimal Control of the Multiphase Stefan Problem |
authorStr |
Abdulla, Ugur G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095184 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0095-4616 |
topic_title |
510 VZ Optimal Control of the Multiphase Stefan Problem Inverse multiphase Stefan problem Optimal control Parabolic free boundary problem Method of finite differences Discrete optimal Stefan problem Convergence in functional and control |
topic |
ddc 510 misc Inverse multiphase Stefan problem misc Optimal control misc Parabolic free boundary problem misc Method of finite differences misc Discrete optimal Stefan problem misc Convergence in functional and control |
topic_unstemmed |
ddc 510 misc Inverse multiphase Stefan problem misc Optimal control misc Parabolic free boundary problem misc Method of finite differences misc Discrete optimal Stefan problem misc Convergence in functional and control |
topic_browse |
ddc 510 misc Inverse multiphase Stefan problem misc Optimal control misc Parabolic free boundary problem misc Method of finite differences misc Discrete optimal Stefan problem misc Convergence in functional and control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied mathematics & optimization |
hierarchy_parent_id |
129095184 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics & optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 |
title |
Optimal Control of the Multiphase Stefan Problem |
ctrlnum |
(DE-627)OLC207264593X (DE-He213)s00245-017-9472-7-p |
title_full |
Optimal Control of the Multiphase Stefan Problem |
author_sort |
Abdulla, Ugur G. |
journal |
Applied mathematics & optimization |
journalStr |
Applied mathematics & optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
479 |
author_browse |
Abdulla, Ugur G. Poggi, Bruno |
container_volume |
80 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Abdulla, Ugur G. |
doi_str_mv |
10.1007/s00245-017-9472-7 |
dewey-full |
510 |
title_sort |
optimal control of the multiphase stefan problem |
title_auth |
Optimal Control of the Multiphase Stefan Problem |
abstract |
Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4323 |
container_issue |
2 |
title_short |
Optimal Control of the Multiphase Stefan Problem |
url |
https://doi.org/10.1007/s00245-017-9472-7 |
remote_bool |
false |
author2 |
Poggi, Bruno |
author2Str |
Poggi, Bruno |
ppnlink |
129095184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00245-017-9472-7 |
up_date |
2024-07-03T15:40:22.651Z |
_version_ |
1803572973565640704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207264593X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324042055.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00245-017-9472-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207264593X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00245-017-9472-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abdulla, Ugur G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal Control of the Multiphase Stefan Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the inverse multiphase Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundaries. Optimal control framework is pursued, where boundary heat flux is the control, and the optimality criteria consist of the minimization of the $$L_2$$-norm declination of the trace of the solution to the Stefan problem from the temperature measurement on the fixed right boundary. The state vector solves multiphase Stefan problem in a weak formulation, which is equivalent to Neumann problem for the quasilinear parabolic PDE with discontinuous coefficient. Full discretization through finite differences is implemented and discrete optimal control problem is introduced. We prove well-posedness in a Sobolev space framework and convergence of discrete optimal control problems to the original problem both with respect to the cost functional and control. Along the way, the convergence of the method of finite differences for the weak solution of the multiphase Stefan problem is proved. The proof is based on achieving a uniform $$L_{\infty }$$ bound, and $$W_2^{1,1}$$-energy estimate for the discrete multiphase Stefan problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse multiphase Stefan problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic free boundary problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of finite differences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete optimal Stefan problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence in functional and control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poggi, Bruno</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer US, 1974</subfield><subfield code="g">80(2018), 2 vom: 03. Jan., Seite 479-513</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:479-513</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00245-017-9472-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">03</subfield><subfield code="c">01</subfield><subfield code="h">479-513</subfield></datafield></record></collection>
|
score |
7.400467 |