Cooperative linear cargo transport with molecular spiders
Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant supe...
Ausführliche Beschreibung
Autor*in: |
Semenov, Oleg [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Natural computing - Springer Netherlands, 2002, 12(2012), 2 vom: 09. Nov., Seite 259-276 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2012 ; number:2 ; day:09 ; month:11 ; pages:259-276 |
Links: |
---|
DOI / URN: |
10.1007/s11047-012-9357-2 |
---|
Katalog-ID: |
OLC2072672449 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2072672449 | ||
003 | DE-627 | ||
005 | 20230503195414.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11047-012-9357-2 |2 doi | |
035 | |a (DE-627)OLC2072672449 | ||
035 | |a (DE-He213)s11047-012-9357-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 004 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a 54.28$jNichtelektronische Datenverarbeitung |2 bkl | ||
084 | |a 54.72$jKünstliche Intelligenz |2 bkl | ||
100 | 1 | |a Semenov, Oleg |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cooperative linear cargo transport with molecular spiders |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2012 | ||
520 | |a Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. | ||
650 | 4 | |a Molecular spider | |
650 | 4 | |a Multiple random walkers | |
650 | 4 | |a Symmetric exclusion process | |
650 | 4 | |a DNA walker | |
650 | 4 | |a Deoxyribozyme | |
700 | 1 | |a Olah, Mark J. |4 aut | |
700 | 1 | |a Stefanovic, Darko |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Natural computing |d Springer Netherlands, 2002 |g 12(2012), 2 vom: 09. Nov., Seite 259-276 |w (DE-627)36367487X |w (DE-600)2110258-2 |w (DE-576)9363674878 |x 1567-7818 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2012 |g number:2 |g day:09 |g month:11 |g pages:259-276 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11047-012-9357-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 54.28$jNichtelektronische Datenverarbeitung |q VZ |0 106418858 |0 (DE-625)106418858 |
936 | b | k | |a 54.72$jKünstliche Intelligenz |q VZ |0 10641240X |0 (DE-625)10641240X |
951 | |a AR | ||
952 | |d 12 |j 2012 |e 2 |b 09 |c 11 |h 259-276 |
author_variant |
o s os m j o mj mjo d s ds |
---|---|
matchkey_str |
article:15677818:2012----::oprtvlnacrornprwtm |
hierarchy_sort_str |
2012 |
bklnumber |
54.28$jNichtelektronische Datenverarbeitung 54.72$jKünstliche Intelligenz |
publishDate |
2012 |
allfields |
10.1007/s11047-012-9357-2 doi (DE-627)OLC2072672449 (DE-He213)s11047-012-9357-2-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Semenov, Oleg verfasserin aut Cooperative linear cargo transport with molecular spiders 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2012 Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme Olah, Mark J. aut Stefanovic, Darko aut Enthalten in Natural computing Springer Netherlands, 2002 12(2012), 2 vom: 09. Nov., Seite 259-276 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:12 year:2012 number:2 day:09 month:11 pages:259-276 https://doi.org/10.1007/s11047-012-9357-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 12 2012 2 09 11 259-276 |
spelling |
10.1007/s11047-012-9357-2 doi (DE-627)OLC2072672449 (DE-He213)s11047-012-9357-2-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Semenov, Oleg verfasserin aut Cooperative linear cargo transport with molecular spiders 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2012 Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme Olah, Mark J. aut Stefanovic, Darko aut Enthalten in Natural computing Springer Netherlands, 2002 12(2012), 2 vom: 09. Nov., Seite 259-276 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:12 year:2012 number:2 day:09 month:11 pages:259-276 https://doi.org/10.1007/s11047-012-9357-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 12 2012 2 09 11 259-276 |
allfields_unstemmed |
10.1007/s11047-012-9357-2 doi (DE-627)OLC2072672449 (DE-He213)s11047-012-9357-2-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Semenov, Oleg verfasserin aut Cooperative linear cargo transport with molecular spiders 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2012 Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme Olah, Mark J. aut Stefanovic, Darko aut Enthalten in Natural computing Springer Netherlands, 2002 12(2012), 2 vom: 09. Nov., Seite 259-276 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:12 year:2012 number:2 day:09 month:11 pages:259-276 https://doi.org/10.1007/s11047-012-9357-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 12 2012 2 09 11 259-276 |
allfieldsGer |
10.1007/s11047-012-9357-2 doi (DE-627)OLC2072672449 (DE-He213)s11047-012-9357-2-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Semenov, Oleg verfasserin aut Cooperative linear cargo transport with molecular spiders 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2012 Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme Olah, Mark J. aut Stefanovic, Darko aut Enthalten in Natural computing Springer Netherlands, 2002 12(2012), 2 vom: 09. Nov., Seite 259-276 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:12 year:2012 number:2 day:09 month:11 pages:259-276 https://doi.org/10.1007/s11047-012-9357-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 12 2012 2 09 11 259-276 |
allfieldsSound |
10.1007/s11047-012-9357-2 doi (DE-627)OLC2072672449 (DE-He213)s11047-012-9357-2-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Semenov, Oleg verfasserin aut Cooperative linear cargo transport with molecular spiders 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2012 Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme Olah, Mark J. aut Stefanovic, Darko aut Enthalten in Natural computing Springer Netherlands, 2002 12(2012), 2 vom: 09. Nov., Seite 259-276 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:12 year:2012 number:2 day:09 month:11 pages:259-276 https://doi.org/10.1007/s11047-012-9357-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 12 2012 2 09 11 259-276 |
language |
English |
source |
Enthalten in Natural computing 12(2012), 2 vom: 09. Nov., Seite 259-276 volume:12 year:2012 number:2 day:09 month:11 pages:259-276 |
sourceStr |
Enthalten in Natural computing 12(2012), 2 vom: 09. Nov., Seite 259-276 volume:12 year:2012 number:2 day:09 month:11 pages:259-276 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Natural computing |
authorswithroles_txt_mv |
Semenov, Oleg @@aut@@ Olah, Mark J. @@aut@@ Stefanovic, Darko @@aut@@ |
publishDateDaySort_date |
2012-11-09T00:00:00Z |
hierarchy_top_id |
36367487X |
dewey-sort |
3570 |
id |
OLC2072672449 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072672449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503195414.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11047-012-9357-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072672449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11047-012-9357-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Semenov, Oleg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cooperative linear cargo transport with molecular spiders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular spider</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple random walkers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric exclusion process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA walker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deoxyribozyme</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olah, Mark J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stefanovic, Darko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Natural computing</subfield><subfield code="d">Springer Netherlands, 2002</subfield><subfield code="g">12(2012), 2 vom: 09. Nov., Seite 259-276</subfield><subfield code="w">(DE-627)36367487X</subfield><subfield code="w">(DE-600)2110258-2</subfield><subfield code="w">(DE-576)9363674878</subfield><subfield code="x">1567-7818</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:2</subfield><subfield code="g">day:09</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:259-276</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11047-012-9357-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">106418858</subfield><subfield code="0">(DE-625)106418858</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="q">VZ</subfield><subfield code="0">10641240X</subfield><subfield code="0">(DE-625)10641240X</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2012</subfield><subfield code="e">2</subfield><subfield code="b">09</subfield><subfield code="c">11</subfield><subfield code="h">259-276</subfield></datafield></record></collection>
|
author |
Semenov, Oleg |
spellingShingle |
Semenov, Oleg ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Molecular spider misc Multiple random walkers misc Symmetric exclusion process misc DNA walker misc Deoxyribozyme Cooperative linear cargo transport with molecular spiders |
authorStr |
Semenov, Oleg |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)36367487X |
format |
Article |
dewey-ones |
570 - Life sciences; biology 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1567-7818 |
topic_title |
570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Cooperative linear cargo transport with molecular spiders Molecular spider Multiple random walkers Symmetric exclusion process DNA walker Deoxyribozyme |
topic |
ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Molecular spider misc Multiple random walkers misc Symmetric exclusion process misc DNA walker misc Deoxyribozyme |
topic_unstemmed |
ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Molecular spider misc Multiple random walkers misc Symmetric exclusion process misc DNA walker misc Deoxyribozyme |
topic_browse |
ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Molecular spider misc Multiple random walkers misc Symmetric exclusion process misc DNA walker misc Deoxyribozyme |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Natural computing |
hierarchy_parent_id |
36367487X |
dewey-tens |
570 - Life sciences; biology 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Natural computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 |
title |
Cooperative linear cargo transport with molecular spiders |
ctrlnum |
(DE-627)OLC2072672449 (DE-He213)s11047-012-9357-2-p |
title_full |
Cooperative linear cargo transport with molecular spiders |
author_sort |
Semenov, Oleg |
journal |
Natural computing |
journalStr |
Natural computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
259 |
author_browse |
Semenov, Oleg Olah, Mark J. Stefanovic, Darko |
container_volume |
12 |
class |
570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl |
format_se |
Aufsätze |
author-letter |
Semenov, Oleg |
doi_str_mv |
10.1007/s11047-012-9357-2 |
normlink |
106418858 10641240X |
normlink_prefix_str_mv |
106418858 (DE-625)106418858 10641240X (DE-625)10641240X |
dewey-full |
570 004 |
title_sort |
cooperative linear cargo transport with molecular spiders |
title_auth |
Cooperative linear cargo transport with molecular spiders |
abstract |
Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. © Springer Science+Business Media Dordrecht 2012 |
abstractGer |
Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. © Springer Science+Business Media Dordrecht 2012 |
abstract_unstemmed |
Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers. © Springer Science+Business Media Dordrecht 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Cooperative linear cargo transport with molecular spiders |
url |
https://doi.org/10.1007/s11047-012-9357-2 |
remote_bool |
false |
author2 |
Olah, Mark J. Stefanovic, Darko |
author2Str |
Olah, Mark J. Stefanovic, Darko |
ppnlink |
36367487X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11047-012-9357-2 |
up_date |
2024-07-03T15:47:08.836Z |
_version_ |
1803573399480434688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072672449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503195414.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11047-012-9357-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072672449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11047-012-9357-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Semenov, Oleg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cooperative linear cargo transport with molecular spiders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Molecular spiders are nanoscale walkers made with DNA enzyme legs attached to a common body. They move over a surface of DNA substrates, cleaving them and leaving behind product DNA strands, which they are able to revisit. Simple one-dimensional models of spider motion show significant superdiffusive motion when the leg-substrate bindings are longer-lived than the leg-product bindings. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of cleaved products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times, despite the growth of the product region. Multi-spider systems move faster and farther than single spiders or systems with multiple simple random walkers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular spider</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple random walkers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric exclusion process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA walker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deoxyribozyme</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olah, Mark J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stefanovic, Darko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Natural computing</subfield><subfield code="d">Springer Netherlands, 2002</subfield><subfield code="g">12(2012), 2 vom: 09. Nov., Seite 259-276</subfield><subfield code="w">(DE-627)36367487X</subfield><subfield code="w">(DE-600)2110258-2</subfield><subfield code="w">(DE-576)9363674878</subfield><subfield code="x">1567-7818</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:2</subfield><subfield code="g">day:09</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:259-276</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11047-012-9357-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">106418858</subfield><subfield code="0">(DE-625)106418858</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="q">VZ</subfield><subfield code="0">10641240X</subfield><subfield code="0">(DE-625)10641240X</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2012</subfield><subfield code="e">2</subfield><subfield code="b">09</subfield><subfield code="c">11</subfield><subfield code="h">259-276</subfield></datafield></record></collection>
|
score |
7.401636 |