Complete intersection dimension
Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projecti...
Ausführliche Beschreibung
Autor*in: |
Avramov, Luchezar L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Publications Mathématiques de L’I.H.É.S. 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Publications mathématiques - Springer-Verlag, 1959, 86(1997), 1 vom: Dez., Seite 67-114 |
---|---|
Übergeordnetes Werk: |
volume:86 ; year:1997 ; number:1 ; month:12 ; pages:67-114 |
Links: |
---|
DOI / URN: |
10.1007/BF02698901 |
---|
Katalog-ID: |
OLC2072739098 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2072739098 | ||
003 | DE-627 | ||
005 | 20230502180445.0 | ||
007 | tu | ||
008 | 200820s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02698901 |2 doi | |
035 | |a (DE-627)OLC2072739098 | ||
035 | |a (DE-He213)BF02698901-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 7684 |q VZ |2 rvk | ||
084 | |a SA 7684 |a SI 300 |q VZ |2 rvk | ||
100 | 1 | |a Avramov, Luchezar L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complete intersection dimension |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Publications Mathématiques de L’I.H.É.S. 1997 | ||
520 | |a Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. | ||
650 | 4 | |a Exact Sequence | |
650 | 4 | |a Spectral Sequence | |
650 | 4 | |a Local Ring | |
650 | 4 | |a Complete Intersection | |
650 | 4 | |a Projective Dimension | |
700 | 1 | |a Gasharov, Vesselin N. |4 aut | |
700 | 1 | |a Peeva, Irena V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Publications mathématiques |d Springer-Verlag, 1959 |g 86(1997), 1 vom: Dez., Seite 67-114 |w (DE-627)129855871 |w (DE-600)281542-4 |w (DE-576)015159701 |x 0073-8301 |7 nnns |
773 | 1 | 8 | |g volume:86 |g year:1997 |g number:1 |g month:12 |g pages:67-114 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02698901 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
936 | r | v | |a SA 7684 |
936 | r | v | |a SA 7684 |
951 | |a AR | ||
952 | |d 86 |j 1997 |e 1 |c 12 |h 67-114 |
author_variant |
l l a ll lla v n g vn vng i v p iv ivp |
---|---|
matchkey_str |
article:00738301:1997----::opeenescin |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1007/BF02698901 doi (DE-627)OLC2072739098 (DE-He213)BF02698901-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk Avramov, Luchezar L. verfasserin aut Complete intersection dimension 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Publications Mathématiques de L’I.H.É.S. 1997 Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension Gasharov, Vesselin N. aut Peeva, Irena V. aut Enthalten in Publications mathématiques Springer-Verlag, 1959 86(1997), 1 vom: Dez., Seite 67-114 (DE-627)129855871 (DE-600)281542-4 (DE-576)015159701 0073-8301 nnns volume:86 year:1997 number:1 month:12 pages:67-114 https://doi.org/10.1007/BF02698901 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 SA 7684 SA 7684 AR 86 1997 1 12 67-114 |
spelling |
10.1007/BF02698901 doi (DE-627)OLC2072739098 (DE-He213)BF02698901-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk Avramov, Luchezar L. verfasserin aut Complete intersection dimension 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Publications Mathématiques de L’I.H.É.S. 1997 Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension Gasharov, Vesselin N. aut Peeva, Irena V. aut Enthalten in Publications mathématiques Springer-Verlag, 1959 86(1997), 1 vom: Dez., Seite 67-114 (DE-627)129855871 (DE-600)281542-4 (DE-576)015159701 0073-8301 nnns volume:86 year:1997 number:1 month:12 pages:67-114 https://doi.org/10.1007/BF02698901 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 SA 7684 SA 7684 AR 86 1997 1 12 67-114 |
allfields_unstemmed |
10.1007/BF02698901 doi (DE-627)OLC2072739098 (DE-He213)BF02698901-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk Avramov, Luchezar L. verfasserin aut Complete intersection dimension 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Publications Mathématiques de L’I.H.É.S. 1997 Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension Gasharov, Vesselin N. aut Peeva, Irena V. aut Enthalten in Publications mathématiques Springer-Verlag, 1959 86(1997), 1 vom: Dez., Seite 67-114 (DE-627)129855871 (DE-600)281542-4 (DE-576)015159701 0073-8301 nnns volume:86 year:1997 number:1 month:12 pages:67-114 https://doi.org/10.1007/BF02698901 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 SA 7684 SA 7684 AR 86 1997 1 12 67-114 |
allfieldsGer |
10.1007/BF02698901 doi (DE-627)OLC2072739098 (DE-He213)BF02698901-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk Avramov, Luchezar L. verfasserin aut Complete intersection dimension 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Publications Mathématiques de L’I.H.É.S. 1997 Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension Gasharov, Vesselin N. aut Peeva, Irena V. aut Enthalten in Publications mathématiques Springer-Verlag, 1959 86(1997), 1 vom: Dez., Seite 67-114 (DE-627)129855871 (DE-600)281542-4 (DE-576)015159701 0073-8301 nnns volume:86 year:1997 number:1 month:12 pages:67-114 https://doi.org/10.1007/BF02698901 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 SA 7684 SA 7684 AR 86 1997 1 12 67-114 |
allfieldsSound |
10.1007/BF02698901 doi (DE-627)OLC2072739098 (DE-He213)BF02698901-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk Avramov, Luchezar L. verfasserin aut Complete intersection dimension 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Publications Mathématiques de L’I.H.É.S. 1997 Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension Gasharov, Vesselin N. aut Peeva, Irena V. aut Enthalten in Publications mathématiques Springer-Verlag, 1959 86(1997), 1 vom: Dez., Seite 67-114 (DE-627)129855871 (DE-600)281542-4 (DE-576)015159701 0073-8301 nnns volume:86 year:1997 number:1 month:12 pages:67-114 https://doi.org/10.1007/BF02698901 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 SA 7684 SA 7684 AR 86 1997 1 12 67-114 |
language |
English |
source |
Enthalten in Publications mathématiques 86(1997), 1 vom: Dez., Seite 67-114 volume:86 year:1997 number:1 month:12 pages:67-114 |
sourceStr |
Enthalten in Publications mathématiques 86(1997), 1 vom: Dez., Seite 67-114 volume:86 year:1997 number:1 month:12 pages:67-114 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Publications mathématiques |
authorswithroles_txt_mv |
Avramov, Luchezar L. @@aut@@ Gasharov, Vesselin N. @@aut@@ Peeva, Irena V. @@aut@@ |
publishDateDaySort_date |
1997-12-01T00:00:00Z |
hierarchy_top_id |
129855871 |
dewey-sort |
3510 |
id |
OLC2072739098 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072739098</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180445.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02698901</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072739098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02698901-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7684</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7684</subfield><subfield code="a">SI 300</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Avramov, Luchezar L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete intersection dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Publications Mathématiques de L’I.H.É.S. 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact Sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral Sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete Intersection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective Dimension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gasharov, Vesselin N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peeva, Irena V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Publications mathématiques</subfield><subfield code="d">Springer-Verlag, 1959</subfield><subfield code="g">86(1997), 1 vom: Dez., Seite 67-114</subfield><subfield code="w">(DE-627)129855871</subfield><subfield code="w">(DE-600)281542-4</subfield><subfield code="w">(DE-576)015159701</subfield><subfield code="x">0073-8301</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:67-114</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02698901</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7684</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7684</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">1997</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">67-114</subfield></datafield></record></collection>
|
author |
Avramov, Luchezar L. |
spellingShingle |
Avramov, Luchezar L. ddc 510 ssgn 17,1 rvk SA 7684 misc Exact Sequence misc Spectral Sequence misc Local Ring misc Complete Intersection misc Projective Dimension Complete intersection dimension |
authorStr |
Avramov, Luchezar L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129855871 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0073-8301 |
topic_title |
510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk Complete intersection dimension Exact Sequence Spectral Sequence Local Ring Complete Intersection Projective Dimension |
topic |
ddc 510 ssgn 17,1 rvk SA 7684 misc Exact Sequence misc Spectral Sequence misc Local Ring misc Complete Intersection misc Projective Dimension |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 7684 misc Exact Sequence misc Spectral Sequence misc Local Ring misc Complete Intersection misc Projective Dimension |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 7684 misc Exact Sequence misc Spectral Sequence misc Local Ring misc Complete Intersection misc Projective Dimension |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Publications mathématiques |
hierarchy_parent_id |
129855871 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Publications mathématiques |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129855871 (DE-600)281542-4 (DE-576)015159701 |
title |
Complete intersection dimension |
ctrlnum |
(DE-627)OLC2072739098 (DE-He213)BF02698901-p |
title_full |
Complete intersection dimension |
author_sort |
Avramov, Luchezar L. |
journal |
Publications mathématiques |
journalStr |
Publications mathématiques |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
67 |
author_browse |
Avramov, Luchezar L. Gasharov, Vesselin N. Peeva, Irena V. |
container_volume |
86 |
class |
510 VZ 17,1 ssgn SA 7684 VZ rvk SA 7684 SI 300 VZ rvk |
format_se |
Aufsätze |
author-letter |
Avramov, Luchezar L. |
doi_str_mv |
10.1007/BF02698901 |
dewey-full |
510 |
title_sort |
complete intersection dimension |
title_auth |
Complete intersection dimension |
abstract |
Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. © Publications Mathématiques de L’I.H.É.S. 1997 |
abstractGer |
Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. © Publications Mathématiques de L’I.H.É.S. 1997 |
abstract_unstemmed |
Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions. © Publications Mathématiques de L’I.H.É.S. 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 |
container_issue |
1 |
title_short |
Complete intersection dimension |
url |
https://doi.org/10.1007/BF02698901 |
remote_bool |
false |
author2 |
Gasharov, Vesselin N. Peeva, Irena V. |
author2Str |
Gasharov, Vesselin N. Peeva, Irena V. |
ppnlink |
129855871 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02698901 |
up_date |
2024-07-03T16:01:29.992Z |
_version_ |
1803574302467948544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2072739098</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180445.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02698901</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2072739098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02698901-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7684</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7684</subfield><subfield code="a">SI 300</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Avramov, Luchezar L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete intersection dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Publications Mathématiques de L’I.H.É.S. 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new homological invariant is introduced for a finite module over a commutative noetherian ring: its CI-dimension. In the local case, sharp quantitative and structural data are obtained for modules of finite CI-dimension, providing the first class of modules of (possibly) infinite projective dimension with a rich structure theory of free resolutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact Sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral Sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete Intersection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective Dimension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gasharov, Vesselin N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peeva, Irena V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Publications mathématiques</subfield><subfield code="d">Springer-Verlag, 1959</subfield><subfield code="g">86(1997), 1 vom: Dez., Seite 67-114</subfield><subfield code="w">(DE-627)129855871</subfield><subfield code="w">(DE-600)281542-4</subfield><subfield code="w">(DE-576)015159701</subfield><subfield code="x">0073-8301</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:67-114</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02698901</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7684</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7684</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">1997</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">67-114</subfield></datafield></record></collection>
|
score |
7.402793 |