Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization
This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and s...
Ausführliche Beschreibung
Autor*in: |
Ebenfeld, Stefan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Continuum mechanics and thermodynamics - Springer-Verlag, 1989, 14(2002), 6 vom: Dez., Seite 511-526 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2002 ; number:6 ; month:12 ; pages:511-526 |
Links: |
---|
DOI / URN: |
10.1007/s001610200086 |
---|
Katalog-ID: |
OLC2073826091 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2073826091 | ||
003 | DE-627 | ||
005 | 20230401065425.0 | ||
007 | tu | ||
008 | 200820s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s001610200086 |2 doi | |
035 | |a (DE-627)OLC2073826091 | ||
035 | |a (DE-He213)s001610200086-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Ebenfeld, Stefan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2002 | ||
520 | |a This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. | ||
650 | 4 | |a Abstract Result | |
650 | 4 | |a Homogenization Theory | |
650 | 4 | |a Viscoelastic Problem | |
650 | 4 | |a Stochastic Homogenization | |
650 | 4 | |a Quasistatic Problem | |
773 | 0 | 8 | |i Enthalten in |t Continuum mechanics and thermodynamics |d Springer-Verlag, 1989 |g 14(2002), 6 vom: Dez., Seite 511-526 |w (DE-627)130799327 |w (DE-600)1007878-2 |w (DE-576)023042303 |x 0935-1175 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2002 |g number:6 |g month:12 |g pages:511-526 |
856 | 4 | 1 | |u https://doi.org/10.1007/s001610200086 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2002 |e 6 |c 12 |h 511-526 |
author_variant |
s e se |
---|---|
matchkey_str |
article:09351175:2002----::eakoteussaipolmficeatcteitnenq |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1007/s001610200086 doi (DE-627)OLC2073826091 (DE-He213)s001610200086-p DE-627 ger DE-627 rakwb eng 530 VZ Ebenfeld, Stefan verfasserin aut Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem Enthalten in Continuum mechanics and thermodynamics Springer-Verlag, 1989 14(2002), 6 vom: Dez., Seite 511-526 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:14 year:2002 number:6 month:12 pages:511-526 https://doi.org/10.1007/s001610200086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 14 2002 6 12 511-526 |
spelling |
10.1007/s001610200086 doi (DE-627)OLC2073826091 (DE-He213)s001610200086-p DE-627 ger DE-627 rakwb eng 530 VZ Ebenfeld, Stefan verfasserin aut Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem Enthalten in Continuum mechanics and thermodynamics Springer-Verlag, 1989 14(2002), 6 vom: Dez., Seite 511-526 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:14 year:2002 number:6 month:12 pages:511-526 https://doi.org/10.1007/s001610200086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 14 2002 6 12 511-526 |
allfields_unstemmed |
10.1007/s001610200086 doi (DE-627)OLC2073826091 (DE-He213)s001610200086-p DE-627 ger DE-627 rakwb eng 530 VZ Ebenfeld, Stefan verfasserin aut Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem Enthalten in Continuum mechanics and thermodynamics Springer-Verlag, 1989 14(2002), 6 vom: Dez., Seite 511-526 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:14 year:2002 number:6 month:12 pages:511-526 https://doi.org/10.1007/s001610200086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 14 2002 6 12 511-526 |
allfieldsGer |
10.1007/s001610200086 doi (DE-627)OLC2073826091 (DE-He213)s001610200086-p DE-627 ger DE-627 rakwb eng 530 VZ Ebenfeld, Stefan verfasserin aut Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem Enthalten in Continuum mechanics and thermodynamics Springer-Verlag, 1989 14(2002), 6 vom: Dez., Seite 511-526 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:14 year:2002 number:6 month:12 pages:511-526 https://doi.org/10.1007/s001610200086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 14 2002 6 12 511-526 |
allfieldsSound |
10.1007/s001610200086 doi (DE-627)OLC2073826091 (DE-He213)s001610200086-p DE-627 ger DE-627 rakwb eng 530 VZ Ebenfeld, Stefan verfasserin aut Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem Enthalten in Continuum mechanics and thermodynamics Springer-Verlag, 1989 14(2002), 6 vom: Dez., Seite 511-526 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:14 year:2002 number:6 month:12 pages:511-526 https://doi.org/10.1007/s001610200086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 14 2002 6 12 511-526 |
language |
English |
source |
Enthalten in Continuum mechanics and thermodynamics 14(2002), 6 vom: Dez., Seite 511-526 volume:14 year:2002 number:6 month:12 pages:511-526 |
sourceStr |
Enthalten in Continuum mechanics and thermodynamics 14(2002), 6 vom: Dez., Seite 511-526 volume:14 year:2002 number:6 month:12 pages:511-526 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Continuum mechanics and thermodynamics |
authorswithroles_txt_mv |
Ebenfeld, Stefan @@aut@@ |
publishDateDaySort_date |
2002-12-01T00:00:00Z |
hierarchy_top_id |
130799327 |
dewey-sort |
3530 |
id |
OLC2073826091 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073826091</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065425.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s001610200086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073826091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s001610200086-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ebenfeld, Stefan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Result</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogenization Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Homogenization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasistatic Problem</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Continuum mechanics and thermodynamics</subfield><subfield code="d">Springer-Verlag, 1989</subfield><subfield code="g">14(2002), 6 vom: Dez., Seite 511-526</subfield><subfield code="w">(DE-627)130799327</subfield><subfield code="w">(DE-600)1007878-2</subfield><subfield code="w">(DE-576)023042303</subfield><subfield code="x">0935-1175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:6</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:511-526</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s001610200086</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2002</subfield><subfield code="e">6</subfield><subfield code="c">12</subfield><subfield code="h">511-526</subfield></datafield></record></collection>
|
author |
Ebenfeld, Stefan |
spellingShingle |
Ebenfeld, Stefan ddc 530 misc Abstract Result misc Homogenization Theory misc Viscoelastic Problem misc Stochastic Homogenization misc Quasistatic Problem Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization |
authorStr |
Ebenfeld, Stefan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799327 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-1175 |
topic_title |
530 VZ Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization Abstract Result Homogenization Theory Viscoelastic Problem Stochastic Homogenization Quasistatic Problem |
topic |
ddc 530 misc Abstract Result misc Homogenization Theory misc Viscoelastic Problem misc Stochastic Homogenization misc Quasistatic Problem |
topic_unstemmed |
ddc 530 misc Abstract Result misc Homogenization Theory misc Viscoelastic Problem misc Stochastic Homogenization misc Quasistatic Problem |
topic_browse |
ddc 530 misc Abstract Result misc Homogenization Theory misc Viscoelastic Problem misc Stochastic Homogenization misc Quasistatic Problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Continuum mechanics and thermodynamics |
hierarchy_parent_id |
130799327 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Continuum mechanics and thermodynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 |
title |
Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization |
ctrlnum |
(DE-627)OLC2073826091 (DE-He213)s001610200086-p |
title_full |
Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization |
author_sort |
Ebenfeld, Stefan |
journal |
Continuum mechanics and thermodynamics |
journalStr |
Continuum mechanics and thermodynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
511 |
author_browse |
Ebenfeld, Stefan |
container_volume |
14 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Ebenfeld, Stefan |
doi_str_mv |
10.1007/s001610200086 |
dewey-full |
530 |
title_sort |
remarks on the quasistatic problem of viscoelasticity: existence, uniqueness and homogenization |
title_auth |
Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization |
abstract |
This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. © Springer-Verlag Berlin Heidelberg 2002 |
abstractGer |
This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. © Springer-Verlag Berlin Heidelberg 2002 |
abstract_unstemmed |
This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem. © Springer-Verlag Berlin Heidelberg 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization |
url |
https://doi.org/10.1007/s001610200086 |
remote_bool |
false |
ppnlink |
130799327 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s001610200086 |
up_date |
2024-07-03T19:56:55.252Z |
_version_ |
1803589113879724033 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073826091</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065425.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s001610200086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073826091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s001610200086-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ebenfeld, Stefan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Remarks on the quasistatic problem of viscoelasticity: Existence, uniqueness and homogenization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article is devoted to the problem (1.1) of quasistatic viscoelasticity. It turns out that (1.1) can be rewritten as an abstract initial value problem of the form (1.2). In Sect. 2 we consider the general abstract initial value problem (1.3). We prove existence and uniqueness of solutions, and stability with respect to the data. In Sects. 3 and 4 we apply our abstract results to the viscoelastic problem (1.1). In Sect. 3 we prove existence and uniqueness of solutions to the n-dimensional problem. In Sect. 4 we develop a stochastic homogenization theory for the 1-dimensional problem. Finally, we close our discussion with some remarks on the homogenization of the n-dimensional problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Result</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogenization Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Homogenization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasistatic Problem</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Continuum mechanics and thermodynamics</subfield><subfield code="d">Springer-Verlag, 1989</subfield><subfield code="g">14(2002), 6 vom: Dez., Seite 511-526</subfield><subfield code="w">(DE-627)130799327</subfield><subfield code="w">(DE-600)1007878-2</subfield><subfield code="w">(DE-576)023042303</subfield><subfield code="x">0935-1175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:6</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:511-526</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s001610200086</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2002</subfield><subfield code="e">6</subfield><subfield code="c">12</subfield><subfield code="h">511-526</subfield></datafield></record></collection>
|
score |
7.4023504 |