A thermodynamic approach to model the caloric properties of semicrystalline polymers
Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the fin...
Ausführliche Beschreibung
Autor*in: |
Lion, Alexander [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Continuum mechanics and thermodynamics - Springer Berlin Heidelberg, 1989, 28(2015), 3 vom: 18. Feb., Seite 799-819 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2015 ; number:3 ; day:18 ; month:02 ; pages:799-819 |
Links: |
---|
DOI / URN: |
10.1007/s00161-015-0415-8 |
---|
Katalog-ID: |
OLC2073831273 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2073831273 | ||
003 | DE-627 | ||
005 | 20230401065534.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00161-015-0415-8 |2 doi | |
035 | |a (DE-627)OLC2073831273 | ||
035 | |a (DE-He213)s00161-015-0415-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Lion, Alexander |e verfasserin |4 aut | |
245 | 1 | 0 | |a A thermodynamic approach to model the caloric properties of semicrystalline polymers |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. | ||
650 | 4 | |a Gibbs free energy | |
650 | 4 | |a Crystallisation | |
650 | 4 | |a Melting | |
650 | 4 | |a Glass transition | |
650 | 4 | |a Rigid amorphous fraction | |
700 | 1 | |a Johlitz, Michael |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Continuum mechanics and thermodynamics |d Springer Berlin Heidelberg, 1989 |g 28(2015), 3 vom: 18. Feb., Seite 799-819 |w (DE-627)130799327 |w (DE-600)1007878-2 |w (DE-576)023042303 |x 0935-1175 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2015 |g number:3 |g day:18 |g month:02 |g pages:799-819 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00161-015-0415-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 28 |j 2015 |e 3 |b 18 |c 02 |h 799-819 |
author_variant |
a l al m j mj |
---|---|
matchkey_str |
article:09351175:2015----::temdnmcprahooeteaoipoeteosm |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00161-015-0415-8 doi (DE-627)OLC2073831273 (DE-He213)s00161-015-0415-8-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut A thermodynamic approach to model the caloric properties of semicrystalline polymers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 28(2015), 3 vom: 18. Feb., Seite 799-819 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:28 year:2015 number:3 day:18 month:02 pages:799-819 https://doi.org/10.1007/s00161-015-0415-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2015 3 18 02 799-819 |
spelling |
10.1007/s00161-015-0415-8 doi (DE-627)OLC2073831273 (DE-He213)s00161-015-0415-8-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut A thermodynamic approach to model the caloric properties of semicrystalline polymers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 28(2015), 3 vom: 18. Feb., Seite 799-819 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:28 year:2015 number:3 day:18 month:02 pages:799-819 https://doi.org/10.1007/s00161-015-0415-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2015 3 18 02 799-819 |
allfields_unstemmed |
10.1007/s00161-015-0415-8 doi (DE-627)OLC2073831273 (DE-He213)s00161-015-0415-8-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut A thermodynamic approach to model the caloric properties of semicrystalline polymers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 28(2015), 3 vom: 18. Feb., Seite 799-819 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:28 year:2015 number:3 day:18 month:02 pages:799-819 https://doi.org/10.1007/s00161-015-0415-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2015 3 18 02 799-819 |
allfieldsGer |
10.1007/s00161-015-0415-8 doi (DE-627)OLC2073831273 (DE-He213)s00161-015-0415-8-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut A thermodynamic approach to model the caloric properties of semicrystalline polymers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 28(2015), 3 vom: 18. Feb., Seite 799-819 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:28 year:2015 number:3 day:18 month:02 pages:799-819 https://doi.org/10.1007/s00161-015-0415-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2015 3 18 02 799-819 |
allfieldsSound |
10.1007/s00161-015-0415-8 doi (DE-627)OLC2073831273 (DE-He213)s00161-015-0415-8-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut A thermodynamic approach to model the caloric properties of semicrystalline polymers 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 28(2015), 3 vom: 18. Feb., Seite 799-819 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:28 year:2015 number:3 day:18 month:02 pages:799-819 https://doi.org/10.1007/s00161-015-0415-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 28 2015 3 18 02 799-819 |
language |
English |
source |
Enthalten in Continuum mechanics and thermodynamics 28(2015), 3 vom: 18. Feb., Seite 799-819 volume:28 year:2015 number:3 day:18 month:02 pages:799-819 |
sourceStr |
Enthalten in Continuum mechanics and thermodynamics 28(2015), 3 vom: 18. Feb., Seite 799-819 volume:28 year:2015 number:3 day:18 month:02 pages:799-819 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Continuum mechanics and thermodynamics |
authorswithroles_txt_mv |
Lion, Alexander @@aut@@ Johlitz, Michael @@aut@@ |
publishDateDaySort_date |
2015-02-18T00:00:00Z |
hierarchy_top_id |
130799327 |
dewey-sort |
3530 |
id |
OLC2073831273 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073831273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065534.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00161-015-0415-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073831273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00161-015-0415-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lion, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A thermodynamic approach to model the caloric properties of semicrystalline polymers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs free energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rigid amorphous fraction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johlitz, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Continuum mechanics and thermodynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">28(2015), 3 vom: 18. Feb., Seite 799-819</subfield><subfield code="w">(DE-627)130799327</subfield><subfield code="w">(DE-600)1007878-2</subfield><subfield code="w">(DE-576)023042303</subfield><subfield code="x">0935-1175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:799-819</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00161-015-0415-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">02</subfield><subfield code="h">799-819</subfield></datafield></record></collection>
|
author |
Lion, Alexander |
spellingShingle |
Lion, Alexander ddc 530 misc Gibbs free energy misc Crystallisation misc Melting misc Glass transition misc Rigid amorphous fraction A thermodynamic approach to model the caloric properties of semicrystalline polymers |
authorStr |
Lion, Alexander |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799327 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-1175 |
topic_title |
530 VZ A thermodynamic approach to model the caloric properties of semicrystalline polymers Gibbs free energy Crystallisation Melting Glass transition Rigid amorphous fraction |
topic |
ddc 530 misc Gibbs free energy misc Crystallisation misc Melting misc Glass transition misc Rigid amorphous fraction |
topic_unstemmed |
ddc 530 misc Gibbs free energy misc Crystallisation misc Melting misc Glass transition misc Rigid amorphous fraction |
topic_browse |
ddc 530 misc Gibbs free energy misc Crystallisation misc Melting misc Glass transition misc Rigid amorphous fraction |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Continuum mechanics and thermodynamics |
hierarchy_parent_id |
130799327 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Continuum mechanics and thermodynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 |
title |
A thermodynamic approach to model the caloric properties of semicrystalline polymers |
ctrlnum |
(DE-627)OLC2073831273 (DE-He213)s00161-015-0415-8-p |
title_full |
A thermodynamic approach to model the caloric properties of semicrystalline polymers |
author_sort |
Lion, Alexander |
journal |
Continuum mechanics and thermodynamics |
journalStr |
Continuum mechanics and thermodynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
799 |
author_browse |
Lion, Alexander Johlitz, Michael |
container_volume |
28 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Lion, Alexander |
doi_str_mv |
10.1007/s00161-015-0415-8 |
dewey-full |
530 |
title_sort |
a thermodynamic approach to model the caloric properties of semicrystalline polymers |
title_auth |
A thermodynamic approach to model the caloric properties of semicrystalline polymers |
abstract |
Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
3 |
title_short |
A thermodynamic approach to model the caloric properties of semicrystalline polymers |
url |
https://doi.org/10.1007/s00161-015-0415-8 |
remote_bool |
false |
author2 |
Johlitz, Michael |
author2Str |
Johlitz, Michael |
ppnlink |
130799327 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00161-015-0415-8 |
up_date |
2024-07-03T19:58:05.849Z |
_version_ |
1803589187900801024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073831273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065534.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00161-015-0415-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073831273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00161-015-0415-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lion, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A thermodynamic approach to model the caloric properties of semicrystalline polymers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs free energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rigid amorphous fraction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johlitz, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Continuum mechanics and thermodynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">28(2015), 3 vom: 18. Feb., Seite 799-819</subfield><subfield code="w">(DE-627)130799327</subfield><subfield code="w">(DE-600)1007878-2</subfield><subfield code="w">(DE-576)023042303</subfield><subfield code="x">0935-1175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:799-819</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00161-015-0415-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">02</subfield><subfield code="h">799-819</subfield></datafield></record></collection>
|
score |
7.400941 |