Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid
Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In or...
Ausführliche Beschreibung
Autor*in: |
Lion, Alexander [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Continuum mechanics and thermodynamics - Springer Berlin Heidelberg, 1989, 29(2017), 5 vom: 19. Jan., Seite 1061-1079 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2017 ; number:5 ; day:19 ; month:01 ; pages:1061-1079 |
Links: |
---|
DOI / URN: |
10.1007/s00161-016-0551-9 |
---|
Katalog-ID: |
OLC2073832504 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2073832504 | ||
003 | DE-627 | ||
005 | 20230401065549.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00161-016-0551-9 |2 doi | |
035 | |a (DE-627)OLC2073832504 | ||
035 | |a (DE-He213)s00161-016-0551-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Lion, Alexander |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2017 | ||
520 | |a Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. | ||
650 | 4 | |a Thermoviscoelasticity | |
650 | 4 | |a Isochoric and isobaric heat capacities | |
650 | 4 | |a Thermal expansion | |
650 | 4 | |a Glass transition | |
700 | 1 | |a Mittermeier, Christoph |4 aut | |
700 | 1 | |a Johlitz, Michael |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Continuum mechanics and thermodynamics |d Springer Berlin Heidelberg, 1989 |g 29(2017), 5 vom: 19. Jan., Seite 1061-1079 |w (DE-627)130799327 |w (DE-600)1007878-2 |w (DE-576)023042303 |x 0935-1175 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2017 |g number:5 |g day:19 |g month:01 |g pages:1061-1079 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00161-016-0551-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 29 |j 2017 |e 5 |b 19 |c 01 |h 1061-1079 |
author_variant |
a l al c m cm m j mj |
---|---|
matchkey_str |
article:09351175:2017----::etaaiisnvlmticagsnhgasrniinagaosiuieprah |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s00161-016-0551-9 doi (DE-627)OLC2073832504 (DE-He213)s00161-016-0551-9-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition Mittermeier, Christoph aut Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 29(2017), 5 vom: 19. Jan., Seite 1061-1079 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 https://doi.org/10.1007/s00161-016-0551-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2017 5 19 01 1061-1079 |
spelling |
10.1007/s00161-016-0551-9 doi (DE-627)OLC2073832504 (DE-He213)s00161-016-0551-9-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition Mittermeier, Christoph aut Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 29(2017), 5 vom: 19. Jan., Seite 1061-1079 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 https://doi.org/10.1007/s00161-016-0551-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2017 5 19 01 1061-1079 |
allfields_unstemmed |
10.1007/s00161-016-0551-9 doi (DE-627)OLC2073832504 (DE-He213)s00161-016-0551-9-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition Mittermeier, Christoph aut Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 29(2017), 5 vom: 19. Jan., Seite 1061-1079 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 https://doi.org/10.1007/s00161-016-0551-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2017 5 19 01 1061-1079 |
allfieldsGer |
10.1007/s00161-016-0551-9 doi (DE-627)OLC2073832504 (DE-He213)s00161-016-0551-9-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition Mittermeier, Christoph aut Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 29(2017), 5 vom: 19. Jan., Seite 1061-1079 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 https://doi.org/10.1007/s00161-016-0551-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2017 5 19 01 1061-1079 |
allfieldsSound |
10.1007/s00161-016-0551-9 doi (DE-627)OLC2073832504 (DE-He213)s00161-016-0551-9-p DE-627 ger DE-627 rakwb eng 530 VZ Lion, Alexander verfasserin aut Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition Mittermeier, Christoph aut Johlitz, Michael aut Enthalten in Continuum mechanics and thermodynamics Springer Berlin Heidelberg, 1989 29(2017), 5 vom: 19. Jan., Seite 1061-1079 (DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 0935-1175 nnns volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 https://doi.org/10.1007/s00161-016-0551-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2017 5 19 01 1061-1079 |
language |
English |
source |
Enthalten in Continuum mechanics and thermodynamics 29(2017), 5 vom: 19. Jan., Seite 1061-1079 volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 |
sourceStr |
Enthalten in Continuum mechanics and thermodynamics 29(2017), 5 vom: 19. Jan., Seite 1061-1079 volume:29 year:2017 number:5 day:19 month:01 pages:1061-1079 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Continuum mechanics and thermodynamics |
authorswithroles_txt_mv |
Lion, Alexander @@aut@@ Mittermeier, Christoph @@aut@@ Johlitz, Michael @@aut@@ |
publishDateDaySort_date |
2017-01-19T00:00:00Z |
hierarchy_top_id |
130799327 |
dewey-sort |
3530 |
id |
OLC2073832504 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073832504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065549.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00161-016-0551-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073832504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00161-016-0551-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lion, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoviscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isochoric and isobaric heat capacities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mittermeier, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johlitz, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Continuum mechanics and thermodynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">29(2017), 5 vom: 19. Jan., Seite 1061-1079</subfield><subfield code="w">(DE-627)130799327</subfield><subfield code="w">(DE-600)1007878-2</subfield><subfield code="w">(DE-576)023042303</subfield><subfield code="x">0935-1175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">day:19</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1061-1079</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00161-016-0551-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="b">19</subfield><subfield code="c">01</subfield><subfield code="h">1061-1079</subfield></datafield></record></collection>
|
author |
Lion, Alexander |
spellingShingle |
Lion, Alexander ddc 530 misc Thermoviscoelasticity misc Isochoric and isobaric heat capacities misc Thermal expansion misc Glass transition Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
authorStr |
Lion, Alexander |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130799327 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-1175 |
topic_title |
530 VZ Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid Thermoviscoelasticity Isochoric and isobaric heat capacities Thermal expansion Glass transition |
topic |
ddc 530 misc Thermoviscoelasticity misc Isochoric and isobaric heat capacities misc Thermal expansion misc Glass transition |
topic_unstemmed |
ddc 530 misc Thermoviscoelasticity misc Isochoric and isobaric heat capacities misc Thermal expansion misc Glass transition |
topic_browse |
ddc 530 misc Thermoviscoelasticity misc Isochoric and isobaric heat capacities misc Thermal expansion misc Glass transition |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Continuum mechanics and thermodynamics |
hierarchy_parent_id |
130799327 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Continuum mechanics and thermodynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130799327 (DE-600)1007878-2 (DE-576)023042303 |
title |
Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
ctrlnum |
(DE-627)OLC2073832504 (DE-He213)s00161-016-0551-9-p |
title_full |
Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
author_sort |
Lion, Alexander |
journal |
Continuum mechanics and thermodynamics |
journalStr |
Continuum mechanics and thermodynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1061 |
author_browse |
Lion, Alexander Mittermeier, Christoph Johlitz, Michael |
container_volume |
29 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Lion, Alexander |
doi_str_mv |
10.1007/s00161-016-0551-9 |
dewey-full |
530 |
title_sort |
heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
title_auth |
Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
abstract |
Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. © Springer-Verlag Berlin Heidelberg 2017 |
abstractGer |
Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. © Springer-Verlag Berlin Heidelberg 2017 |
abstract_unstemmed |
Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model. © Springer-Verlag Berlin Heidelberg 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_24 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
5 |
title_short |
Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid |
url |
https://doi.org/10.1007/s00161-016-0551-9 |
remote_bool |
false |
author2 |
Mittermeier, Christoph Johlitz, Michael |
author2Str |
Mittermeier, Christoph Johlitz, Michael |
ppnlink |
130799327 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00161-016-0551-9 |
up_date |
2024-07-03T19:58:24.118Z |
_version_ |
1803589207058284544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073832504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065549.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00161-016-0551-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073832504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00161-016-0551-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lion, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting–Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference $$c_\mathrm{p} -c_\mathrm{v} $$ is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoviscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isochoric and isobaric heat capacities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mittermeier, Christoph</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johlitz, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Continuum mechanics and thermodynamics</subfield><subfield code="d">Springer Berlin Heidelberg, 1989</subfield><subfield code="g">29(2017), 5 vom: 19. Jan., Seite 1061-1079</subfield><subfield code="w">(DE-627)130799327</subfield><subfield code="w">(DE-600)1007878-2</subfield><subfield code="w">(DE-576)023042303</subfield><subfield code="x">0935-1175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">day:19</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1061-1079</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00161-016-0551-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="b">19</subfield><subfield code="c">01</subfield><subfield code="h">1061-1079</subfield></datafield></record></collection>
|
score |
7.399311 |