Minimizing submodular functions over families of sets
Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizi...
Ausführliche Beschreibung
Autor*in: |
Goemans, M. X. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Anmerkung: |
© Akadémiai Kiadó 1995 |
---|
Übergeordnetes Werk: |
Enthalten in: Combinatorica - Springer-Verlag, 1981, 15(1995), 4 vom: Dez., Seite 499-513 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:1995 ; number:4 ; month:12 ; pages:499-513 |
Links: |
---|
DOI / URN: |
10.1007/BF01192523 |
---|
Katalog-ID: |
OLC2073864619 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2073864619 | ||
003 | DE-627 | ||
005 | 20230502111137.0 | ||
007 | tu | ||
008 | 200820s1995 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01192523 |2 doi | |
035 | |a (DE-627)OLC2073864619 | ||
035 | |a (DE-He213)BF01192523-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Goemans, M. X. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Minimizing submodular functions over families of sets |
264 | 1 | |c 1995 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó 1995 | ||
520 | |a Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. | ||
700 | 1 | |a Ramakrishnan, V. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Combinatorica |d Springer-Verlag, 1981 |g 15(1995), 4 vom: Dez., Seite 499-513 |w (DE-627)129957143 |w (DE-600)405133-6 |w (DE-576)015527492 |x 0209-9683 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:1995 |g number:4 |g month:12 |g pages:499-513 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01192523 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 15 |j 1995 |e 4 |c 12 |h 499-513 |
author_variant |
m x g mx mxg v s r vs vsr |
---|---|
matchkey_str |
article:02099683:1995----::iiiigumdlrucinoe |
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
10.1007/BF01192523 doi (DE-627)OLC2073864619 (DE-He213)BF01192523-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Goemans, M. X. verfasserin aut Minimizing submodular functions over families of sets 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó 1995 Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. Ramakrishnan, V. S. aut Enthalten in Combinatorica Springer-Verlag, 1981 15(1995), 4 vom: Dez., Seite 499-513 (DE-627)129957143 (DE-600)405133-6 (DE-576)015527492 0209-9683 nnns volume:15 year:1995 number:4 month:12 pages:499-513 https://doi.org/10.1007/BF01192523 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4323 AR 15 1995 4 12 499-513 |
spelling |
10.1007/BF01192523 doi (DE-627)OLC2073864619 (DE-He213)BF01192523-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Goemans, M. X. verfasserin aut Minimizing submodular functions over families of sets 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó 1995 Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. Ramakrishnan, V. S. aut Enthalten in Combinatorica Springer-Verlag, 1981 15(1995), 4 vom: Dez., Seite 499-513 (DE-627)129957143 (DE-600)405133-6 (DE-576)015527492 0209-9683 nnns volume:15 year:1995 number:4 month:12 pages:499-513 https://doi.org/10.1007/BF01192523 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4323 AR 15 1995 4 12 499-513 |
allfields_unstemmed |
10.1007/BF01192523 doi (DE-627)OLC2073864619 (DE-He213)BF01192523-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Goemans, M. X. verfasserin aut Minimizing submodular functions over families of sets 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó 1995 Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. Ramakrishnan, V. S. aut Enthalten in Combinatorica Springer-Verlag, 1981 15(1995), 4 vom: Dez., Seite 499-513 (DE-627)129957143 (DE-600)405133-6 (DE-576)015527492 0209-9683 nnns volume:15 year:1995 number:4 month:12 pages:499-513 https://doi.org/10.1007/BF01192523 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4323 AR 15 1995 4 12 499-513 |
allfieldsGer |
10.1007/BF01192523 doi (DE-627)OLC2073864619 (DE-He213)BF01192523-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Goemans, M. X. verfasserin aut Minimizing submodular functions over families of sets 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó 1995 Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. Ramakrishnan, V. S. aut Enthalten in Combinatorica Springer-Verlag, 1981 15(1995), 4 vom: Dez., Seite 499-513 (DE-627)129957143 (DE-600)405133-6 (DE-576)015527492 0209-9683 nnns volume:15 year:1995 number:4 month:12 pages:499-513 https://doi.org/10.1007/BF01192523 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4323 AR 15 1995 4 12 499-513 |
allfieldsSound |
10.1007/BF01192523 doi (DE-627)OLC2073864619 (DE-He213)BF01192523-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Goemans, M. X. verfasserin aut Minimizing submodular functions over families of sets 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó 1995 Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. Ramakrishnan, V. S. aut Enthalten in Combinatorica Springer-Verlag, 1981 15(1995), 4 vom: Dez., Seite 499-513 (DE-627)129957143 (DE-600)405133-6 (DE-576)015527492 0209-9683 nnns volume:15 year:1995 number:4 month:12 pages:499-513 https://doi.org/10.1007/BF01192523 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4323 AR 15 1995 4 12 499-513 |
language |
English |
source |
Enthalten in Combinatorica 15(1995), 4 vom: Dez., Seite 499-513 volume:15 year:1995 number:4 month:12 pages:499-513 |
sourceStr |
Enthalten in Combinatorica 15(1995), 4 vom: Dez., Seite 499-513 volume:15 year:1995 number:4 month:12 pages:499-513 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Combinatorica |
authorswithroles_txt_mv |
Goemans, M. X. @@aut@@ Ramakrishnan, V. S. @@aut@@ |
publishDateDaySort_date |
1995-12-01T00:00:00Z |
hierarchy_top_id |
129957143 |
dewey-sort |
3510 |
id |
OLC2073864619 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073864619</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01192523</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073864619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01192523-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goemans, M. X.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimizing submodular functions over families of sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramakrishnan, V. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Combinatorica</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">15(1995), 4 vom: Dez., Seite 499-513</subfield><subfield code="w">(DE-627)129957143</subfield><subfield code="w">(DE-600)405133-6</subfield><subfield code="w">(DE-576)015527492</subfield><subfield code="x">0209-9683</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:499-513</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01192523</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">1995</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">499-513</subfield></datafield></record></collection>
|
author |
Goemans, M. X. |
spellingShingle |
Goemans, M. X. ddc 510 ssgn 17,1 Minimizing submodular functions over families of sets |
authorStr |
Goemans, M. X. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129957143 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0209-9683 |
topic_title |
510 VZ 17,1 ssgn Minimizing submodular functions over families of sets |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Combinatorica |
hierarchy_parent_id |
129957143 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Combinatorica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129957143 (DE-600)405133-6 (DE-576)015527492 |
title |
Minimizing submodular functions over families of sets |
ctrlnum |
(DE-627)OLC2073864619 (DE-He213)BF01192523-p |
title_full |
Minimizing submodular functions over families of sets |
author_sort |
Goemans, M. X. |
journal |
Combinatorica |
journalStr |
Combinatorica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
txt |
container_start_page |
499 |
author_browse |
Goemans, M. X. Ramakrishnan, V. S. |
container_volume |
15 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Goemans, M. X. |
doi_str_mv |
10.1007/BF01192523 |
dewey-full |
510 |
title_sort |
minimizing submodular functions over families of sets |
title_auth |
Minimizing submodular functions over families of sets |
abstract |
Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. © Akadémiai Kiadó 1995 |
abstractGer |
Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. © Akadémiai Kiadó 1995 |
abstract_unstemmed |
Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results. © Akadémiai Kiadó 1995 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4323 |
container_issue |
4 |
title_short |
Minimizing submodular functions over families of sets |
url |
https://doi.org/10.1007/BF01192523 |
remote_bool |
false |
author2 |
Ramakrishnan, V. S. |
author2Str |
Ramakrishnan, V. S. |
ppnlink |
129957143 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01192523 |
up_date |
2024-07-03T20:03:59.367Z |
_version_ |
1803589558592339968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073864619</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01192523</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073864619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01192523-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goemans, M. X.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimizing submodular functions over families of sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the problem of characterizing the minimum of a submodular function when the minimization is restricted to a family of subsets. We show that, for many interesting cases, there exist two elementsa andb of the groundset such that the problem is equivalent to the problem of minimizing the submodular function over the sets containinga but notb. This leads to a polynomial-time algorithm for minimizing a submodular function over these families of sets. Our results apply, for example, to the families of odd cardinality subsets or even cardinality subsets separating two given vertices, or to the complement of a lattice family of subsets. We also derive that the second smallest value of a submodular function over a lattice family can be computed in polynomial-time. These results generalize and unify several known results.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramakrishnan, V. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Combinatorica</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">15(1995), 4 vom: Dez., Seite 499-513</subfield><subfield code="w">(DE-627)129957143</subfield><subfield code="w">(DE-600)405133-6</subfield><subfield code="w">(DE-576)015527492</subfield><subfield code="x">0209-9683</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:499-513</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01192523</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">1995</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">499-513</subfield></datafield></record></collection>
|
score |
7.40189 |