LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid
Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to i...
Ausführliche Beschreibung
Autor*in: |
Li, Congshan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Electrical engineering - Springer Berlin Heidelberg, 1994, 101(2019), 4 vom: 16. Okt., Seite 1133-1143 |
---|---|
Übergeordnetes Werk: |
volume:101 ; year:2019 ; number:4 ; day:16 ; month:10 ; pages:1133-1143 |
Links: |
---|
DOI / URN: |
10.1007/s00202-019-00855-0 |
---|
Katalog-ID: |
OLC2073952364 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2073952364 | ||
003 | DE-627 | ||
005 | 20230323153029.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00202-019-00855-0 |2 doi | |
035 | |a (DE-627)OLC2073952364 | ||
035 | |a (DE-He213)s00202-019-00855-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 621.3 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Li, Congshan |e verfasserin |4 aut | |
245 | 1 | 0 | |a LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. | ||
650 | 4 | |a DC auxiliary power control | |
650 | 4 | |a Transient stability | |
650 | 4 | |a Multi-infeed DC | |
650 | 4 | |a Traditional power support factor | |
650 | 4 | |a New power support factor | |
700 | 1 | |a He, Ping |4 aut | |
700 | 1 | |a Li, Yikai |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Electrical engineering |d Springer Berlin Heidelberg, 1994 |g 101(2019), 4 vom: 16. Okt., Seite 1133-1143 |w (DE-627)182588734 |w (DE-600)1219035-4 |w (DE-576)045292310 |x 0948-7921 |7 nnns |
773 | 1 | 8 | |g volume:101 |g year:2019 |g number:4 |g day:16 |g month:10 |g pages:1133-1143 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00202-019-00855-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_207 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 101 |j 2019 |e 4 |b 16 |c 10 |h 1133-1143 |
author_variant |
c l cl p h ph y l yl |
---|---|
matchkey_str |
article:09487921:2019----::chdaxlaymrecpwroriaecnrltaeyosdrntefetflcrclo |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00202-019-00855-0 doi (DE-627)OLC2073952364 (DE-He213)s00202-019-00855-0-p DE-627 ger DE-627 rakwb eng 621.3 VZ 620 VZ Li, Congshan verfasserin aut LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor He, Ping aut Li, Yikai aut Enthalten in Electrical engineering Springer Berlin Heidelberg, 1994 101(2019), 4 vom: 16. Okt., Seite 1133-1143 (DE-627)182588734 (DE-600)1219035-4 (DE-576)045292310 0948-7921 nnns volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 https://doi.org/10.1007/s00202-019-00855-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_150 GBV_ILN_207 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4277 AR 101 2019 4 16 10 1133-1143 |
spelling |
10.1007/s00202-019-00855-0 doi (DE-627)OLC2073952364 (DE-He213)s00202-019-00855-0-p DE-627 ger DE-627 rakwb eng 621.3 VZ 620 VZ Li, Congshan verfasserin aut LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor He, Ping aut Li, Yikai aut Enthalten in Electrical engineering Springer Berlin Heidelberg, 1994 101(2019), 4 vom: 16. Okt., Seite 1133-1143 (DE-627)182588734 (DE-600)1219035-4 (DE-576)045292310 0948-7921 nnns volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 https://doi.org/10.1007/s00202-019-00855-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_150 GBV_ILN_207 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4277 AR 101 2019 4 16 10 1133-1143 |
allfields_unstemmed |
10.1007/s00202-019-00855-0 doi (DE-627)OLC2073952364 (DE-He213)s00202-019-00855-0-p DE-627 ger DE-627 rakwb eng 621.3 VZ 620 VZ Li, Congshan verfasserin aut LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor He, Ping aut Li, Yikai aut Enthalten in Electrical engineering Springer Berlin Heidelberg, 1994 101(2019), 4 vom: 16. Okt., Seite 1133-1143 (DE-627)182588734 (DE-600)1219035-4 (DE-576)045292310 0948-7921 nnns volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 https://doi.org/10.1007/s00202-019-00855-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_150 GBV_ILN_207 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4277 AR 101 2019 4 16 10 1133-1143 |
allfieldsGer |
10.1007/s00202-019-00855-0 doi (DE-627)OLC2073952364 (DE-He213)s00202-019-00855-0-p DE-627 ger DE-627 rakwb eng 621.3 VZ 620 VZ Li, Congshan verfasserin aut LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor He, Ping aut Li, Yikai aut Enthalten in Electrical engineering Springer Berlin Heidelberg, 1994 101(2019), 4 vom: 16. Okt., Seite 1133-1143 (DE-627)182588734 (DE-600)1219035-4 (DE-576)045292310 0948-7921 nnns volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 https://doi.org/10.1007/s00202-019-00855-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_150 GBV_ILN_207 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4277 AR 101 2019 4 16 10 1133-1143 |
allfieldsSound |
10.1007/s00202-019-00855-0 doi (DE-627)OLC2073952364 (DE-He213)s00202-019-00855-0-p DE-627 ger DE-627 rakwb eng 621.3 VZ 620 VZ Li, Congshan verfasserin aut LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor He, Ping aut Li, Yikai aut Enthalten in Electrical engineering Springer Berlin Heidelberg, 1994 101(2019), 4 vom: 16. Okt., Seite 1133-1143 (DE-627)182588734 (DE-600)1219035-4 (DE-576)045292310 0948-7921 nnns volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 https://doi.org/10.1007/s00202-019-00855-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_150 GBV_ILN_207 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4277 AR 101 2019 4 16 10 1133-1143 |
language |
English |
source |
Enthalten in Electrical engineering 101(2019), 4 vom: 16. Okt., Seite 1133-1143 volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 |
sourceStr |
Enthalten in Electrical engineering 101(2019), 4 vom: 16. Okt., Seite 1133-1143 volume:101 year:2019 number:4 day:16 month:10 pages:1133-1143 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor |
dewey-raw |
621.3 |
isfreeaccess_bool |
false |
container_title |
Electrical engineering |
authorswithroles_txt_mv |
Li, Congshan @@aut@@ He, Ping @@aut@@ Li, Yikai @@aut@@ |
publishDateDaySort_date |
2019-10-16T00:00:00Z |
hierarchy_top_id |
182588734 |
dewey-sort |
3621.3 |
id |
OLC2073952364 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073952364</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323153029.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00202-019-00855-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073952364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00202-019-00855-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">621.3</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Congshan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC auxiliary power control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-infeed DC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional power support factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">New power support factor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yikai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrical engineering</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">101(2019), 4 vom: 16. Okt., Seite 1133-1143</subfield><subfield code="w">(DE-627)182588734</subfield><subfield code="w">(DE-600)1219035-4</subfield><subfield code="w">(DE-576)045292310</subfield><subfield code="x">0948-7921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:16</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1133-1143</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00202-019-00855-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">16</subfield><subfield code="c">10</subfield><subfield code="h">1133-1143</subfield></datafield></record></collection>
|
author |
Li, Congshan |
spellingShingle |
Li, Congshan ddc 621.3 ddc 620 misc DC auxiliary power control misc Transient stability misc Multi-infeed DC misc Traditional power support factor misc New power support factor LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
authorStr |
Li, Congshan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182588734 |
format |
Article |
dewey-ones |
621 - Applied physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0948-7921 |
topic_title |
621.3 VZ 620 VZ LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid DC auxiliary power control Transient stability Multi-infeed DC Traditional power support factor New power support factor |
topic |
ddc 621.3 ddc 620 misc DC auxiliary power control misc Transient stability misc Multi-infeed DC misc Traditional power support factor misc New power support factor |
topic_unstemmed |
ddc 621.3 ddc 620 misc DC auxiliary power control misc Transient stability misc Multi-infeed DC misc Traditional power support factor misc New power support factor |
topic_browse |
ddc 621.3 ddc 620 misc DC auxiliary power control misc Transient stability misc Multi-infeed DC misc Traditional power support factor misc New power support factor |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Electrical engineering |
hierarchy_parent_id |
182588734 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Electrical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182588734 (DE-600)1219035-4 (DE-576)045292310 |
title |
LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
ctrlnum |
(DE-627)OLC2073952364 (DE-He213)s00202-019-00855-0-p |
title_full |
LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
author_sort |
Li, Congshan |
journal |
Electrical engineering |
journalStr |
Electrical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1133 |
author_browse |
Li, Congshan He, Ping Li, Yikai |
container_volume |
101 |
class |
621.3 VZ 620 VZ |
format_se |
Aufsätze |
author-letter |
Li, Congshan |
doi_str_mv |
10.1007/s00202-019-00855-0 |
dewey-full |
621.3 620 |
title_sort |
lcc-hvdc auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
title_auth |
LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
abstract |
Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_150 GBV_ILN_207 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4277 |
container_issue |
4 |
title_short |
LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid |
url |
https://doi.org/10.1007/s00202-019-00855-0 |
remote_bool |
false |
author2 |
He, Ping Li, Yikai |
author2Str |
He, Ping Li, Yikai |
ppnlink |
182588734 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00202-019-00855-0 |
up_date |
2024-07-03T20:22:14.624Z |
_version_ |
1803590707053592576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2073952364</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323153029.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00202-019-00855-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2073952364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00202-019-00855-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">621.3</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Congshan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">LCC-HVDC auxiliary emergency power coordinated control strategy considering the effect of electrical connection of the sending-end power grid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract HVDC auxiliary emergency power control can improve the transient stability of AC/DC power system. Compared with other control methods, HVDC auxiliary emergency power control has the advantages of quick response, large adjustment capacity and less investment, so it is the primary choice to improve the transient stability. Taking multi-infeed DC (MIDC) transmission system as the research object, based on the definition of the traditional power support factor, considering the influence of the electrical connection of the sending-end power grid on the power support, a new power support factor (NPSF) is defined. Based on the NPSF, multiple DC coordination sharing strategies are implemented when one of the DC faults occurs. Finally, MIDC is built on the PSCAD. Single DC auxiliary power control and multiple DC auxiliary power coordinated control were simulated, respectively. Rationality of the definition of NPSF is verified, and it is concluded that multiple DC joint power control is superior to single DC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC auxiliary power control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-infeed DC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional power support factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">New power support factor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yikai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrical engineering</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">101(2019), 4 vom: 16. Okt., Seite 1133-1143</subfield><subfield code="w">(DE-627)182588734</subfield><subfield code="w">(DE-600)1219035-4</subfield><subfield code="w">(DE-576)045292310</subfield><subfield code="x">0948-7921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:16</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1133-1143</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00202-019-00855-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">16</subfield><subfield code="c">10</subfield><subfield code="h">1133-1143</subfield></datafield></record></collection>
|
score |
7.399824 |