The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity
Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eig...
Ausführliche Beschreibung
Autor*in: |
Pnueli, D. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1974 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Noordhoff International Publishing 1974 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering mathematics - Kluwer Academic Publishers, 1967, 8(1974), 4 vom: Okt., Seite 297-302 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:1974 ; number:4 ; month:10 ; pages:297-302 |
Links: |
---|
DOI / URN: |
10.1007/BF02353495 |
---|
Katalog-ID: |
OLC2074026471 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074026471 | ||
003 | DE-627 | ||
005 | 20230503052608.0 | ||
007 | tu | ||
008 | 200819s1974 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02353495 |2 doi | |
035 | |a (DE-627)OLC2074026471 | ||
035 | |a (DE-He213)BF02353495-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Pnueli, D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
264 | 1 | |c 1974 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Noordhoff International Publishing 1974 | ||
520 | |a Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. | ||
650 | 4 | |a Differential Equation | |
650 | 4 | |a Mathematical Modeling | |
650 | 4 | |a Ordinary Differential Equation | |
650 | 4 | |a Eigenvalue Problem | |
650 | 4 | |a Industrial Mathematic | |
700 | 1 | |a Isenberg, J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering mathematics |d Kluwer Academic Publishers, 1967 |g 8(1974), 4 vom: Okt., Seite 297-302 |w (DE-627)129595748 |w (DE-600)240689-5 |w (DE-576)015088766 |x 0022-0833 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:1974 |g number:4 |g month:10 |g pages:297-302 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02353495 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 1974 |e 4 |c 10 |h 297-302 |
author_variant |
d p dp j i ji |
---|---|
matchkey_str |
article:00220833:1974----::hrdcinfndmninlievlerbesohsltoosmlaeuagba |
hierarchy_sort_str |
1974 |
publishDate |
1974 |
allfields |
10.1007/BF02353495 doi (DE-627)OLC2074026471 (DE-He213)BF02353495-p DE-627 ger DE-627 rakwb eng 510 VZ Pnueli, D. verfasserin aut The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Noordhoff International Publishing 1974 Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic Isenberg, J. aut Enthalten in Journal of engineering mathematics Kluwer Academic Publishers, 1967 8(1974), 4 vom: Okt., Seite 297-302 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:8 year:1974 number:4 month:10 pages:297-302 https://doi.org/10.1007/BF02353495 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4307 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 AR 8 1974 4 10 297-302 |
spelling |
10.1007/BF02353495 doi (DE-627)OLC2074026471 (DE-He213)BF02353495-p DE-627 ger DE-627 rakwb eng 510 VZ Pnueli, D. verfasserin aut The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Noordhoff International Publishing 1974 Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic Isenberg, J. aut Enthalten in Journal of engineering mathematics Kluwer Academic Publishers, 1967 8(1974), 4 vom: Okt., Seite 297-302 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:8 year:1974 number:4 month:10 pages:297-302 https://doi.org/10.1007/BF02353495 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4307 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 AR 8 1974 4 10 297-302 |
allfields_unstemmed |
10.1007/BF02353495 doi (DE-627)OLC2074026471 (DE-He213)BF02353495-p DE-627 ger DE-627 rakwb eng 510 VZ Pnueli, D. verfasserin aut The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Noordhoff International Publishing 1974 Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic Isenberg, J. aut Enthalten in Journal of engineering mathematics Kluwer Academic Publishers, 1967 8(1974), 4 vom: Okt., Seite 297-302 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:8 year:1974 number:4 month:10 pages:297-302 https://doi.org/10.1007/BF02353495 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4307 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 AR 8 1974 4 10 297-302 |
allfieldsGer |
10.1007/BF02353495 doi (DE-627)OLC2074026471 (DE-He213)BF02353495-p DE-627 ger DE-627 rakwb eng 510 VZ Pnueli, D. verfasserin aut The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Noordhoff International Publishing 1974 Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic Isenberg, J. aut Enthalten in Journal of engineering mathematics Kluwer Academic Publishers, 1967 8(1974), 4 vom: Okt., Seite 297-302 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:8 year:1974 number:4 month:10 pages:297-302 https://doi.org/10.1007/BF02353495 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4307 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 AR 8 1974 4 10 297-302 |
allfieldsSound |
10.1007/BF02353495 doi (DE-627)OLC2074026471 (DE-He213)BF02353495-p DE-627 ger DE-627 rakwb eng 510 VZ Pnueli, D. verfasserin aut The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Noordhoff International Publishing 1974 Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic Isenberg, J. aut Enthalten in Journal of engineering mathematics Kluwer Academic Publishers, 1967 8(1974), 4 vom: Okt., Seite 297-302 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:8 year:1974 number:4 month:10 pages:297-302 https://doi.org/10.1007/BF02353495 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4307 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 AR 8 1974 4 10 297-302 |
language |
English |
source |
Enthalten in Journal of engineering mathematics 8(1974), 4 vom: Okt., Seite 297-302 volume:8 year:1974 number:4 month:10 pages:297-302 |
sourceStr |
Enthalten in Journal of engineering mathematics 8(1974), 4 vom: Okt., Seite 297-302 volume:8 year:1974 number:4 month:10 pages:297-302 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of engineering mathematics |
authorswithroles_txt_mv |
Pnueli, D. @@aut@@ Isenberg, J. @@aut@@ |
publishDateDaySort_date |
1974-10-01T00:00:00Z |
hierarchy_top_id |
129595748 |
dewey-sort |
3510 |
id |
OLC2074026471 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074026471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503052608.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02353495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074026471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02353495-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pnueli, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Noordhoff International Publishing 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalue Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Mathematic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Isenberg, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Kluwer Academic Publishers, 1967</subfield><subfield code="g">8(1974), 4 vom: Okt., Seite 297-302</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:4</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:297-302</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02353495</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1974</subfield><subfield code="e">4</subfield><subfield code="c">10</subfield><subfield code="h">297-302</subfield></datafield></record></collection>
|
author |
Pnueli, D. |
spellingShingle |
Pnueli, D. ddc 510 misc Differential Equation misc Mathematical Modeling misc Ordinary Differential Equation misc Eigenvalue Problem misc Industrial Mathematic The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
authorStr |
Pnueli, D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595748 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-0833 |
topic_title |
510 VZ The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity Differential Equation Mathematical Modeling Ordinary Differential Equation Eigenvalue Problem Industrial Mathematic |
topic |
ddc 510 misc Differential Equation misc Mathematical Modeling misc Ordinary Differential Equation misc Eigenvalue Problem misc Industrial Mathematic |
topic_unstemmed |
ddc 510 misc Differential Equation misc Mathematical Modeling misc Ordinary Differential Equation misc Eigenvalue Problem misc Industrial Mathematic |
topic_browse |
ddc 510 misc Differential Equation misc Mathematical Modeling misc Ordinary Differential Equation misc Eigenvalue Problem misc Industrial Mathematic |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of engineering mathematics |
hierarchy_parent_id |
129595748 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of engineering mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 |
title |
The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
ctrlnum |
(DE-627)OLC2074026471 (DE-He213)BF02353495-p |
title_full |
The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
author_sort |
Pnueli, D. |
journal |
Journal of engineering mathematics |
journalStr |
Journal of engineering mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1974 |
contenttype_str_mv |
txt |
container_start_page |
297 |
author_browse |
Pnueli, D. Isenberg, J. |
container_volume |
8 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Pnueli, D. |
doi_str_mv |
10.1007/BF02353495 |
dewey-full |
510 |
title_sort |
the reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
title_auth |
The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
abstract |
Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. © Noordhoff International Publishing 1974 |
abstractGer |
Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. © Noordhoff International Publishing 1974 |
abstract_unstemmed |
Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program. © Noordhoff International Publishing 1974 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4307 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
4 |
title_short |
The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity |
url |
https://doi.org/10.1007/BF02353495 |
remote_bool |
false |
author2 |
Isenberg, J. |
author2Str |
Isenberg, J. |
ppnlink |
129595748 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02353495 |
up_date |
2024-07-03T20:38:21.314Z |
_version_ |
1803591720702574592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074026471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503052608.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02353495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074026471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02353495-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pnueli, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The reduction of one-dimensional eigenvalue problems to the solution of simultaneous algebraic equations with one nonlinearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Noordhoff International Publishing 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one nonlinearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are then just input for the program.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalue Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Mathematic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Isenberg, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Kluwer Academic Publishers, 1967</subfield><subfield code="g">8(1974), 4 vom: Okt., Seite 297-302</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:4</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:297-302</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02353495</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">1974</subfield><subfield code="e">4</subfield><subfield code="c">10</subfield><subfield code="h">297-302</subfield></datafield></record></collection>
|
score |
7.400528 |