Torsion of a round shaft of variable diameter
Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft...
Ausführliche Beschreibung
Autor*in: |
Chiang, Chun-Ron [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering mathematics - Springer Netherlands, 1967, 77(2012), 1 vom: 14. Juni, Seite 119-130 |
---|---|
Übergeordnetes Werk: |
volume:77 ; year:2012 ; number:1 ; day:14 ; month:06 ; pages:119-130 |
Links: |
---|
DOI / URN: |
10.1007/s10665-012-9549-x |
---|
Katalog-ID: |
OLC2074043449 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074043449 | ||
003 | DE-627 | ||
005 | 20230503052731.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10665-012-9549-x |2 doi | |
035 | |a (DE-627)OLC2074043449 | ||
035 | |a (DE-He213)s10665-012-9549-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Chiang, Chun-Ron |e verfasserin |4 aut | |
245 | 1 | 0 | |a Torsion of a round shaft of variable diameter |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2012 | ||
520 | |a Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. | ||
650 | 4 | |a Oblate spheroidal coordinates | |
650 | 4 | |a Stress concentration factor | |
650 | 4 | |a Stress intensity factor | |
650 | 4 | |a Stress rounding factor | |
650 | 4 | |a Torsion | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering mathematics |d Springer Netherlands, 1967 |g 77(2012), 1 vom: 14. Juni, Seite 119-130 |w (DE-627)129595748 |w (DE-600)240689-5 |w (DE-576)015088766 |x 0022-0833 |7 nnns |
773 | 1 | 8 | |g volume:77 |g year:2012 |g number:1 |g day:14 |g month:06 |g pages:119-130 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10665-012-9549-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 77 |j 2012 |e 1 |b 14 |c 06 |h 119-130 |
author_variant |
c r c crc |
---|---|
matchkey_str |
article:00220833:2012----::osooaonsatfai |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s10665-012-9549-x doi (DE-627)OLC2074043449 (DE-He213)s10665-012-9549-x-p DE-627 ger DE-627 rakwb eng 510 VZ Chiang, Chun-Ron verfasserin aut Torsion of a round shaft of variable diameter 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 77(2012), 1 vom: 14. Juni, Seite 119-130 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:77 year:2012 number:1 day:14 month:06 pages:119-130 https://doi.org/10.1007/s10665-012-9549-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4700 AR 77 2012 1 14 06 119-130 |
spelling |
10.1007/s10665-012-9549-x doi (DE-627)OLC2074043449 (DE-He213)s10665-012-9549-x-p DE-627 ger DE-627 rakwb eng 510 VZ Chiang, Chun-Ron verfasserin aut Torsion of a round shaft of variable diameter 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 77(2012), 1 vom: 14. Juni, Seite 119-130 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:77 year:2012 number:1 day:14 month:06 pages:119-130 https://doi.org/10.1007/s10665-012-9549-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4700 AR 77 2012 1 14 06 119-130 |
allfields_unstemmed |
10.1007/s10665-012-9549-x doi (DE-627)OLC2074043449 (DE-He213)s10665-012-9549-x-p DE-627 ger DE-627 rakwb eng 510 VZ Chiang, Chun-Ron verfasserin aut Torsion of a round shaft of variable diameter 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 77(2012), 1 vom: 14. Juni, Seite 119-130 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:77 year:2012 number:1 day:14 month:06 pages:119-130 https://doi.org/10.1007/s10665-012-9549-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4700 AR 77 2012 1 14 06 119-130 |
allfieldsGer |
10.1007/s10665-012-9549-x doi (DE-627)OLC2074043449 (DE-He213)s10665-012-9549-x-p DE-627 ger DE-627 rakwb eng 510 VZ Chiang, Chun-Ron verfasserin aut Torsion of a round shaft of variable diameter 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 77(2012), 1 vom: 14. Juni, Seite 119-130 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:77 year:2012 number:1 day:14 month:06 pages:119-130 https://doi.org/10.1007/s10665-012-9549-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4700 AR 77 2012 1 14 06 119-130 |
allfieldsSound |
10.1007/s10665-012-9549-x doi (DE-627)OLC2074043449 (DE-He213)s10665-012-9549-x-p DE-627 ger DE-627 rakwb eng 510 VZ Chiang, Chun-Ron verfasserin aut Torsion of a round shaft of variable diameter 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 77(2012), 1 vom: 14. Juni, Seite 119-130 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:77 year:2012 number:1 day:14 month:06 pages:119-130 https://doi.org/10.1007/s10665-012-9549-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4700 AR 77 2012 1 14 06 119-130 |
language |
English |
source |
Enthalten in Journal of engineering mathematics 77(2012), 1 vom: 14. Juni, Seite 119-130 volume:77 year:2012 number:1 day:14 month:06 pages:119-130 |
sourceStr |
Enthalten in Journal of engineering mathematics 77(2012), 1 vom: 14. Juni, Seite 119-130 volume:77 year:2012 number:1 day:14 month:06 pages:119-130 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of engineering mathematics |
authorswithroles_txt_mv |
Chiang, Chun-Ron @@aut@@ |
publishDateDaySort_date |
2012-06-14T00:00:00Z |
hierarchy_top_id |
129595748 |
dewey-sort |
3510 |
id |
OLC2074043449 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074043449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503052731.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-012-9549-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074043449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-012-9549-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiang, Chun-Ron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torsion of a round shaft of variable diameter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oblate spheroidal coordinates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress concentration factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress intensity factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress rounding factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torsion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">77(2012), 1 vom: 14. Juni, Seite 119-130</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:119-130</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-012-9549-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield><subfield code="h">119-130</subfield></datafield></record></collection>
|
author |
Chiang, Chun-Ron |
spellingShingle |
Chiang, Chun-Ron ddc 510 misc Oblate spheroidal coordinates misc Stress concentration factor misc Stress intensity factor misc Stress rounding factor misc Torsion Torsion of a round shaft of variable diameter |
authorStr |
Chiang, Chun-Ron |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595748 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-0833 |
topic_title |
510 VZ Torsion of a round shaft of variable diameter Oblate spheroidal coordinates Stress concentration factor Stress intensity factor Stress rounding factor Torsion |
topic |
ddc 510 misc Oblate spheroidal coordinates misc Stress concentration factor misc Stress intensity factor misc Stress rounding factor misc Torsion |
topic_unstemmed |
ddc 510 misc Oblate spheroidal coordinates misc Stress concentration factor misc Stress intensity factor misc Stress rounding factor misc Torsion |
topic_browse |
ddc 510 misc Oblate spheroidal coordinates misc Stress concentration factor misc Stress intensity factor misc Stress rounding factor misc Torsion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of engineering mathematics |
hierarchy_parent_id |
129595748 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of engineering mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 |
title |
Torsion of a round shaft of variable diameter |
ctrlnum |
(DE-627)OLC2074043449 (DE-He213)s10665-012-9549-x-p |
title_full |
Torsion of a round shaft of variable diameter |
author_sort |
Chiang, Chun-Ron |
journal |
Journal of engineering mathematics |
journalStr |
Journal of engineering mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
119 |
author_browse |
Chiang, Chun-Ron |
container_volume |
77 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Chiang, Chun-Ron |
doi_str_mv |
10.1007/s10665-012-9549-x |
dewey-full |
510 |
title_sort |
torsion of a round shaft of variable diameter |
title_auth |
Torsion of a round shaft of variable diameter |
abstract |
Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. © Springer Science+Business Media B.V. 2012 |
abstractGer |
Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. © Springer Science+Business Media B.V. 2012 |
abstract_unstemmed |
Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials. © Springer Science+Business Media B.V. 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Torsion of a round shaft of variable diameter |
url |
https://doi.org/10.1007/s10665-012-9549-x |
remote_bool |
false |
ppnlink |
129595748 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10665-012-9549-x |
up_date |
2024-07-03T20:41:55.206Z |
_version_ |
1803591944983543808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074043449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503052731.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-012-9549-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074043449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-012-9549-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiang, Chun-Ron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torsion of a round shaft of variable diameter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Problems for a round shaft of variable diameter subjected to torsion are studied. By transforming the governing equation into oblate spheroidal coordinates, a general solution is obtained in terms of the associated Legendre functions of order 2. Two illustrative problems, one being a shaft with a hyperbolic notch, the other a cylindrical shaft containing a small oblate spheroidal cavity located on its central axis, are solved. On the basis of the ensuing stress concentration, the important connection between the deep notch and crack is exploited. Several previously known solutions can be recovered. Results are extended to the cases of composites and transversely isotropic materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oblate spheroidal coordinates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress concentration factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress intensity factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress rounding factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torsion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">77(2012), 1 vom: 14. Juni, Seite 119-130</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:119-130</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-012-9549-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield><subfield code="h">119-130</subfield></datafield></record></collection>
|
score |
7.4019556 |