Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects
Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the...
Ausführliche Beschreibung
Autor*in: |
Mahajan, Amit [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering mathematics - Springer Netherlands, 1967, 115(2019), 1 vom: 18. März, Seite 67-87 |
---|---|
Übergeordnetes Werk: |
volume:115 ; year:2019 ; number:1 ; day:18 ; month:03 ; pages:67-87 |
Links: |
---|
DOI / URN: |
10.1007/s10665-019-09992-8 |
---|
Katalog-ID: |
OLC2074048092 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074048092 | ||
003 | DE-627 | ||
005 | 20230503052804.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10665-019-09992-8 |2 doi | |
035 | |a (DE-627)OLC2074048092 | ||
035 | |a (DE-He213)s10665-019-09992-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Mahajan, Amit |e verfasserin |4 aut | |
245 | 1 | 0 | |a Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2019 | ||
520 | |a Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. | ||
650 | 4 | |a Cross diffusion | |
650 | 4 | |a Double-diffusive natural convection | |
650 | 4 | |a Magnetic field | |
650 | 4 | |a Magnetic nanofluid | |
700 | 1 | |a Sharma, Mahesh Kumar |0 (orcid)0000-0001-8977-6494 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering mathematics |d Springer Netherlands, 1967 |g 115(2019), 1 vom: 18. März, Seite 67-87 |w (DE-627)129595748 |w (DE-600)240689-5 |w (DE-576)015088766 |x 0022-0833 |7 nnns |
773 | 1 | 8 | |g volume:115 |g year:2019 |g number:1 |g day:18 |g month:03 |g pages:67-87 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10665-019-09992-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 115 |j 2019 |e 1 |b 18 |c 03 |h 67-87 |
author_variant |
a m am m k s mk mks |
---|---|
matchkey_str |
article:00220833:2019----::obeifsvcnetoiaantcaolilyrih |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s10665-019-09992-8 doi (DE-627)OLC2074048092 (DE-He213)s10665-019-09992-8-p DE-627 ger DE-627 rakwb eng 510 VZ Mahajan, Amit verfasserin aut Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid Sharma, Mahesh Kumar (orcid)0000-0001-8977-6494 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 115(2019), 1 vom: 18. März, Seite 67-87 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:115 year:2019 number:1 day:18 month:03 pages:67-87 https://doi.org/10.1007/s10665-019-09992-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 115 2019 1 18 03 67-87 |
spelling |
10.1007/s10665-019-09992-8 doi (DE-627)OLC2074048092 (DE-He213)s10665-019-09992-8-p DE-627 ger DE-627 rakwb eng 510 VZ Mahajan, Amit verfasserin aut Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid Sharma, Mahesh Kumar (orcid)0000-0001-8977-6494 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 115(2019), 1 vom: 18. März, Seite 67-87 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:115 year:2019 number:1 day:18 month:03 pages:67-87 https://doi.org/10.1007/s10665-019-09992-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 115 2019 1 18 03 67-87 |
allfields_unstemmed |
10.1007/s10665-019-09992-8 doi (DE-627)OLC2074048092 (DE-He213)s10665-019-09992-8-p DE-627 ger DE-627 rakwb eng 510 VZ Mahajan, Amit verfasserin aut Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid Sharma, Mahesh Kumar (orcid)0000-0001-8977-6494 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 115(2019), 1 vom: 18. März, Seite 67-87 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:115 year:2019 number:1 day:18 month:03 pages:67-87 https://doi.org/10.1007/s10665-019-09992-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 115 2019 1 18 03 67-87 |
allfieldsGer |
10.1007/s10665-019-09992-8 doi (DE-627)OLC2074048092 (DE-He213)s10665-019-09992-8-p DE-627 ger DE-627 rakwb eng 510 VZ Mahajan, Amit verfasserin aut Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid Sharma, Mahesh Kumar (orcid)0000-0001-8977-6494 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 115(2019), 1 vom: 18. März, Seite 67-87 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:115 year:2019 number:1 day:18 month:03 pages:67-87 https://doi.org/10.1007/s10665-019-09992-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 115 2019 1 18 03 67-87 |
allfieldsSound |
10.1007/s10665-019-09992-8 doi (DE-627)OLC2074048092 (DE-He213)s10665-019-09992-8-p DE-627 ger DE-627 rakwb eng 510 VZ Mahajan, Amit verfasserin aut Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid Sharma, Mahesh Kumar (orcid)0000-0001-8977-6494 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 115(2019), 1 vom: 18. März, Seite 67-87 (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:115 year:2019 number:1 day:18 month:03 pages:67-87 https://doi.org/10.1007/s10665-019-09992-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 115 2019 1 18 03 67-87 |
language |
English |
source |
Enthalten in Journal of engineering mathematics 115(2019), 1 vom: 18. März, Seite 67-87 volume:115 year:2019 number:1 day:18 month:03 pages:67-87 |
sourceStr |
Enthalten in Journal of engineering mathematics 115(2019), 1 vom: 18. März, Seite 67-87 volume:115 year:2019 number:1 day:18 month:03 pages:67-87 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of engineering mathematics |
authorswithroles_txt_mv |
Mahajan, Amit @@aut@@ Sharma, Mahesh Kumar @@aut@@ |
publishDateDaySort_date |
2019-03-18T00:00:00Z |
hierarchy_top_id |
129595748 |
dewey-sort |
3510 |
id |
OLC2074048092 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074048092</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503052804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-019-09992-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074048092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-019-09992-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahajan, Amit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-diffusive natural convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic nanofluid</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Mahesh Kumar</subfield><subfield code="0">(orcid)0000-0001-8977-6494</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">115(2019), 1 vom: 18. März, Seite 67-87</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:67-87</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-019-09992-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">67-87</subfield></datafield></record></collection>
|
author |
Mahajan, Amit |
spellingShingle |
Mahajan, Amit ddc 510 misc Cross diffusion misc Double-diffusive natural convection misc Magnetic field misc Magnetic nanofluid Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
authorStr |
Mahajan, Amit |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595748 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-0833 |
topic_title |
510 VZ Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects Cross diffusion Double-diffusive natural convection Magnetic field Magnetic nanofluid |
topic |
ddc 510 misc Cross diffusion misc Double-diffusive natural convection misc Magnetic field misc Magnetic nanofluid |
topic_unstemmed |
ddc 510 misc Cross diffusion misc Double-diffusive natural convection misc Magnetic field misc Magnetic nanofluid |
topic_browse |
ddc 510 misc Cross diffusion misc Double-diffusive natural convection misc Magnetic field misc Magnetic nanofluid |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of engineering mathematics |
hierarchy_parent_id |
129595748 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of engineering mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 |
title |
Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
ctrlnum |
(DE-627)OLC2074048092 (DE-He213)s10665-019-09992-8-p |
title_full |
Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
author_sort |
Mahajan, Amit |
journal |
Journal of engineering mathematics |
journalStr |
Journal of engineering mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
67 |
author_browse |
Mahajan, Amit Sharma, Mahesh Kumar |
container_volume |
115 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Mahajan, Amit |
doi_str_mv |
10.1007/s10665-019-09992-8 |
normlink |
(ORCID)0000-0001-8977-6494 |
normlink_prefix_str_mv |
(orcid)0000-0001-8977-6494 |
dewey-full |
510 |
title_sort |
double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
title_auth |
Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
abstract |
Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. © Springer Nature B.V. 2019 |
abstractGer |
Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. © Springer Nature B.V. 2019 |
abstract_unstemmed |
Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs. © Springer Nature B.V. 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
1 |
title_short |
Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects |
url |
https://doi.org/10.1007/s10665-019-09992-8 |
remote_bool |
false |
author2 |
Sharma, Mahesh Kumar |
author2Str |
Sharma, Mahesh Kumar |
ppnlink |
129595748 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10665-019-09992-8 |
up_date |
2024-07-03T20:43:02.738Z |
_version_ |
1803592015799123968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074048092</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503052804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-019-09992-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074048092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-019-09992-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahajan, Amit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Double-diffusive convection in a magnetic nanofluid layer with cross diffusion effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present paper investigates the onset of double-diffusive convection in a layer of magnetic nanofluid with the Soret and Dufour effects. The impact of three important slip mechanisms, viz. Brownian motion, thermophoresis, and magnetophoresis are included in the model that is used for the magnetic nanofluids (MNFs). We performed a linear stability analysis to investigate the problem and derived the results for water-based and ester-based magnetic nanofluids. The results are presented simultaneously for both the gravity as well as the microgravity environment for Rigid–Rigid boundaries. A numerical technique is employed to examine the nature of the stability, and it is found that the stability of the considered problem is stationary. It is also observed that the effect of increase in the values of Dufour parameter $$N_{TC}$$ and solutal Rayleigh number Rs is to delay, while increase in the values of Soret parameter $$N_{CT}$$, concentration Rayleigh number $$R_n$$, nonlinearity of fluid magnetization $$M_3$$, Lewis number Le, and thermo-solutal Lewis number $$Le_s$$ is to advance the onset of double-diffusive magnetic nanofluid convection in both the gravity and microgravity environment. In the gravity environment, value of the critical thermal Rayleigh number $$Ra_c$$ first decreases as Langevin parameter $$\alpha _L$$ increases from 1 to 2, and then it starts increasing with the further increase in the value of $$\alpha _L$$. This behavior is found to be just opposite to that observed for the critical magnetic Rayleigh number $$Ng_c$$ in the case of microgravity environment. Moreover, the values of $$Ra_c$$ and $$Ng_c$$ are found be higher in case of the ester-based MNFs compared with the water-based MNFs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double-diffusive natural convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic nanofluid</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharma, Mahesh Kumar</subfield><subfield code="0">(orcid)0000-0001-8977-6494</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">115(2019), 1 vom: 18. März, Seite 67-87</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:67-87</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-019-09992-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">67-87</subfield></datafield></record></collection>
|
score |
7.3987684 |