A representation theorem for quantum systems
Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞}...
Ausführliche Beschreibung
Autor*in: |
Dosi, Anar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Functional analysis and its applications - Springer US, 1967, 47(2013), 3 vom: Juli, Seite 241-245 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2013 ; number:3 ; month:07 ; pages:241-245 |
Links: |
---|
DOI / URN: |
10.1007/s10688-013-0031-y |
---|
Katalog-ID: |
OLC2074079745 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074079745 | ||
003 | DE-627 | ||
005 | 20230503055544.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10688-013-0031-y |2 doi | |
035 | |a (DE-627)OLC2074079745 | ||
035 | |a (DE-He213)s10688-013-0031-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 4940 |q VZ |2 rvk | ||
084 | |a SA 4940 |q VZ |2 rvk | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Dosi, Anar |e verfasserin |4 aut | |
245 | 1 | 0 | |a A representation theorem for quantum systems |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. | ||
773 | 0 | 8 | |i Enthalten in |t Functional analysis and its applications |d Springer US, 1967 |g 47(2013), 3 vom: Juli, Seite 241-245 |w (DE-627)12951358X |w (DE-600)210745-4 |w (DE-576)014922282 |x 0016-2663 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2013 |g number:3 |g month:07 |g pages:241-245 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10688-013-0031-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4325 | ||
936 | r | v | |a SA 4940 |
936 | r | v | |a SA 4940 |
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2013 |e 3 |c 07 |h 241-245 |
author_variant |
a d ad |
---|---|
matchkey_str |
article:00162663:2013----::rpeettotermoq |
hierarchy_sort_str |
2013 |
bklnumber |
31.00 |
publishDate |
2013 |
allfields |
10.1007/s10688-013-0031-y doi (DE-627)OLC2074079745 (DE-He213)s10688-013-0031-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 4940 VZ rvk SA 4940 VZ rvk 31.00 bkl Dosi, Anar verfasserin aut A representation theorem for quantum systems 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. Enthalten in Functional analysis and its applications Springer US, 1967 47(2013), 3 vom: Juli, Seite 241-245 (DE-627)12951358X (DE-600)210745-4 (DE-576)014922282 0016-2663 nnns volume:47 year:2013 number:3 month:07 pages:241-245 https://doi.org/10.1007/s10688-013-0031-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4125 GBV_ILN_4305 GBV_ILN_4325 SA 4940 SA 4940 31.00 VZ AR 47 2013 3 07 241-245 |
spelling |
10.1007/s10688-013-0031-y doi (DE-627)OLC2074079745 (DE-He213)s10688-013-0031-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 4940 VZ rvk SA 4940 VZ rvk 31.00 bkl Dosi, Anar verfasserin aut A representation theorem for quantum systems 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. Enthalten in Functional analysis and its applications Springer US, 1967 47(2013), 3 vom: Juli, Seite 241-245 (DE-627)12951358X (DE-600)210745-4 (DE-576)014922282 0016-2663 nnns volume:47 year:2013 number:3 month:07 pages:241-245 https://doi.org/10.1007/s10688-013-0031-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4125 GBV_ILN_4305 GBV_ILN_4325 SA 4940 SA 4940 31.00 VZ AR 47 2013 3 07 241-245 |
allfields_unstemmed |
10.1007/s10688-013-0031-y doi (DE-627)OLC2074079745 (DE-He213)s10688-013-0031-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 4940 VZ rvk SA 4940 VZ rvk 31.00 bkl Dosi, Anar verfasserin aut A representation theorem for quantum systems 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. Enthalten in Functional analysis and its applications Springer US, 1967 47(2013), 3 vom: Juli, Seite 241-245 (DE-627)12951358X (DE-600)210745-4 (DE-576)014922282 0016-2663 nnns volume:47 year:2013 number:3 month:07 pages:241-245 https://doi.org/10.1007/s10688-013-0031-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4125 GBV_ILN_4305 GBV_ILN_4325 SA 4940 SA 4940 31.00 VZ AR 47 2013 3 07 241-245 |
allfieldsGer |
10.1007/s10688-013-0031-y doi (DE-627)OLC2074079745 (DE-He213)s10688-013-0031-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 4940 VZ rvk SA 4940 VZ rvk 31.00 bkl Dosi, Anar verfasserin aut A representation theorem for quantum systems 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. Enthalten in Functional analysis and its applications Springer US, 1967 47(2013), 3 vom: Juli, Seite 241-245 (DE-627)12951358X (DE-600)210745-4 (DE-576)014922282 0016-2663 nnns volume:47 year:2013 number:3 month:07 pages:241-245 https://doi.org/10.1007/s10688-013-0031-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4125 GBV_ILN_4305 GBV_ILN_4325 SA 4940 SA 4940 31.00 VZ AR 47 2013 3 07 241-245 |
allfieldsSound |
10.1007/s10688-013-0031-y doi (DE-627)OLC2074079745 (DE-He213)s10688-013-0031-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 4940 VZ rvk SA 4940 VZ rvk 31.00 bkl Dosi, Anar verfasserin aut A representation theorem for quantum systems 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. Enthalten in Functional analysis and its applications Springer US, 1967 47(2013), 3 vom: Juli, Seite 241-245 (DE-627)12951358X (DE-600)210745-4 (DE-576)014922282 0016-2663 nnns volume:47 year:2013 number:3 month:07 pages:241-245 https://doi.org/10.1007/s10688-013-0031-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4125 GBV_ILN_4305 GBV_ILN_4325 SA 4940 SA 4940 31.00 VZ AR 47 2013 3 07 241-245 |
language |
English |
source |
Enthalten in Functional analysis and its applications 47(2013), 3 vom: Juli, Seite 241-245 volume:47 year:2013 number:3 month:07 pages:241-245 |
sourceStr |
Enthalten in Functional analysis and its applications 47(2013), 3 vom: Juli, Seite 241-245 volume:47 year:2013 number:3 month:07 pages:241-245 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Functional analysis and its applications |
authorswithroles_txt_mv |
Dosi, Anar @@aut@@ |
publishDateDaySort_date |
2013-07-01T00:00:00Z |
hierarchy_top_id |
12951358X |
dewey-sort |
3510 |
id |
OLC2074079745 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074079745</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503055544.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10688-013-0031-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074079745</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10688-013-0031-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 4940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 4940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dosi, Anar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A representation theorem for quantum systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Functional analysis and its applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">47(2013), 3 vom: Juli, Seite 241-245</subfield><subfield code="w">(DE-627)12951358X</subfield><subfield code="w">(DE-600)210745-4</subfield><subfield code="w">(DE-576)014922282</subfield><subfield code="x">0016-2663</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:241-245</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10688-013-0031-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 4940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 4940</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="c">07</subfield><subfield code="h">241-245</subfield></datafield></record></collection>
|
author |
Dosi, Anar |
spellingShingle |
Dosi, Anar ddc 510 ssgn 17,1 rvk SA 4940 bkl 31.00 A representation theorem for quantum systems |
authorStr |
Dosi, Anar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12951358X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0016-2663 |
topic_title |
510 VZ 17,1 ssgn SA 4940 VZ rvk 31.00 bkl A representation theorem for quantum systems |
topic |
ddc 510 ssgn 17,1 rvk SA 4940 bkl 31.00 |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 4940 bkl 31.00 |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 4940 bkl 31.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Functional analysis and its applications |
hierarchy_parent_id |
12951358X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Functional analysis and its applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12951358X (DE-600)210745-4 (DE-576)014922282 |
title |
A representation theorem for quantum systems |
ctrlnum |
(DE-627)OLC2074079745 (DE-He213)s10688-013-0031-y-p |
title_full |
A representation theorem for quantum systems |
author_sort |
Dosi, Anar |
journal |
Functional analysis and its applications |
journalStr |
Functional analysis and its applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
241 |
author_browse |
Dosi, Anar |
container_volume |
47 |
class |
510 VZ 17,1 ssgn SA 4940 VZ rvk 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Dosi, Anar |
doi_str_mv |
10.1007/s10688-013-0031-y |
dewey-full |
510 |
title_sort |
a representation theorem for quantum systems |
title_auth |
A representation theorem for quantum systems |
abstract |
Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4125 GBV_ILN_4305 GBV_ILN_4325 |
container_issue |
3 |
title_short |
A representation theorem for quantum systems |
url |
https://doi.org/10.1007/s10688-013-0031-y |
remote_bool |
false |
ppnlink |
12951358X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10688-013-0031-y |
up_date |
2024-07-03T20:48:31.883Z |
_version_ |
1803592360928477184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074079745</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503055544.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10688-013-0031-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074079745</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10688-013-0031-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 4940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 4940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dosi, Anar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A representation theorem for quantum systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $ L^{∞} $-system up to a quantum order isomorphism.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Functional analysis and its applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">47(2013), 3 vom: Juli, Seite 241-245</subfield><subfield code="w">(DE-627)12951358X</subfield><subfield code="w">(DE-600)210745-4</subfield><subfield code="w">(DE-576)014922282</subfield><subfield code="x">0016-2663</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:241-245</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10688-013-0031-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 4940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 4940</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="c">07</subfield><subfield code="h">241-245</subfield></datafield></record></collection>
|
score |
7.4012156 |