Threshold of femtosecond laser-induced damage in transparent materials
Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanic...
Ausführliche Beschreibung
Autor*in: |
Jia, T.Q. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer-Verlag, 1981, 74(2002), 4 vom: Apr., Seite 503-507 |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2002 ; number:4 ; month:04 ; pages:503-507 |
Links: |
---|
DOI / URN: |
10.1007/s003390100903 |
---|
Katalog-ID: |
OLC2074157517 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074157517 | ||
003 | DE-627 | ||
005 | 20230331123911.0 | ||
007 | tu | ||
008 | 200819s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s003390100903 |2 doi | |
035 | |a (DE-627)OLC2074157517 | ||
035 | |a (DE-He213)s003390100903-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Jia, T.Q. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Threshold of femtosecond laser-induced damage in transparent materials |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2001 | ||
520 | |a Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. | ||
700 | 1 | |a Li, R.X. |4 aut | |
700 | 1 | |a Liu, Z. |4 aut | |
700 | 1 | |a Xu, Z.Z. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer-Verlag, 1981 |g 74(2002), 4 vom: Apr., Seite 503-507 |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:74 |g year:2002 |g number:4 |g month:04 |g pages:503-507 |
856 | 4 | 1 | |u https://doi.org/10.1007/s003390100903 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 74 |j 2002 |e 4 |c 04 |h 503-507 |
author_variant |
t j tj r l rl z l zl z x zx |
---|---|
matchkey_str |
article:09478396:2002----::hehlofmoeodaeidcdaaenr |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1007/s003390100903 doi (DE-627)OLC2074157517 (DE-He213)s003390100903-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Jia, T.Q. verfasserin aut Threshold of femtosecond laser-induced damage in transparent materials 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2001 Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. Li, R.X. aut Liu, Z. aut Xu, Z.Z. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 74(2002), 4 vom: Apr., Seite 503-507 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:74 year:2002 number:4 month:04 pages:503-507 https://doi.org/10.1007/s003390100903 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 74 2002 4 04 503-507 |
spelling |
10.1007/s003390100903 doi (DE-627)OLC2074157517 (DE-He213)s003390100903-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Jia, T.Q. verfasserin aut Threshold of femtosecond laser-induced damage in transparent materials 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2001 Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. Li, R.X. aut Liu, Z. aut Xu, Z.Z. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 74(2002), 4 vom: Apr., Seite 503-507 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:74 year:2002 number:4 month:04 pages:503-507 https://doi.org/10.1007/s003390100903 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 74 2002 4 04 503-507 |
allfields_unstemmed |
10.1007/s003390100903 doi (DE-627)OLC2074157517 (DE-He213)s003390100903-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Jia, T.Q. verfasserin aut Threshold of femtosecond laser-induced damage in transparent materials 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2001 Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. Li, R.X. aut Liu, Z. aut Xu, Z.Z. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 74(2002), 4 vom: Apr., Seite 503-507 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:74 year:2002 number:4 month:04 pages:503-507 https://doi.org/10.1007/s003390100903 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 74 2002 4 04 503-507 |
allfieldsGer |
10.1007/s003390100903 doi (DE-627)OLC2074157517 (DE-He213)s003390100903-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Jia, T.Q. verfasserin aut Threshold of femtosecond laser-induced damage in transparent materials 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2001 Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. Li, R.X. aut Liu, Z. aut Xu, Z.Z. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 74(2002), 4 vom: Apr., Seite 503-507 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:74 year:2002 number:4 month:04 pages:503-507 https://doi.org/10.1007/s003390100903 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 74 2002 4 04 503-507 |
allfieldsSound |
10.1007/s003390100903 doi (DE-627)OLC2074157517 (DE-He213)s003390100903-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Jia, T.Q. verfasserin aut Threshold of femtosecond laser-induced damage in transparent materials 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2001 Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. Li, R.X. aut Liu, Z. aut Xu, Z.Z. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 74(2002), 4 vom: Apr., Seite 503-507 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:74 year:2002 number:4 month:04 pages:503-507 https://doi.org/10.1007/s003390100903 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 74 2002 4 04 503-507 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 74(2002), 4 vom: Apr., Seite 503-507 volume:74 year:2002 number:4 month:04 pages:503-507 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 74(2002), 4 vom: Apr., Seite 503-507 volume:74 year:2002 number:4 month:04 pages:503-507 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Jia, T.Q. @@aut@@ Li, R.X. @@aut@@ Liu, Z. @@aut@@ Xu, Z.Z. @@aut@@ |
publishDateDaySort_date |
2002-04-01T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2074157517 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074157517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331123911.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s003390100903</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074157517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s003390100903-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jia, T.Q.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Threshold of femtosecond laser-induced damage in transparent materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, R.X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Z.Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">74(2002), 4 vom: Apr., Seite 503-507</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:503-507</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s003390100903</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2002</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">503-507</subfield></datafield></record></collection>
|
author |
Jia, T.Q. |
spellingShingle |
Jia, T.Q. ddc 530 rvk UA 9001.A Threshold of femtosecond laser-induced damage in transparent materials |
authorStr |
Jia, T.Q. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk Threshold of femtosecond laser-induced damage in transparent materials |
topic |
ddc 530 rvk UA 9001.A |
topic_unstemmed |
ddc 530 rvk UA 9001.A |
topic_browse |
ddc 530 rvk UA 9001.A |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
Threshold of femtosecond laser-induced damage in transparent materials |
ctrlnum |
(DE-627)OLC2074157517 (DE-He213)s003390100903-p |
title_full |
Threshold of femtosecond laser-induced damage in transparent materials |
author_sort |
Jia, T.Q. |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
503 |
author_browse |
Jia, T.Q. Li, R.X. Liu, Z. Xu, Z.Z. |
container_volume |
74 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Jia, T.Q. |
doi_str_mv |
10.1007/s003390100903 |
dewey-full |
530 620 |
title_sort |
threshold of femtosecond laser-induced damage in transparent materials |
title_auth |
Threshold of femtosecond laser-induced damage in transparent materials |
abstract |
Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. © Springer-Verlag 2001 |
abstractGer |
Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. © Springer-Verlag 2001 |
abstract_unstemmed |
Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments. © Springer-Verlag 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Threshold of femtosecond laser-induced damage in transparent materials |
url |
https://doi.org/10.1007/s003390100903 |
remote_bool |
false |
author2 |
Li, R.X. Liu, Z. Xu, Z.Z. |
author2Str |
Li, R.X. Liu, Z. Xu, Z.Z. |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s003390100903 |
up_date |
2024-07-03T21:07:19.798Z |
_version_ |
1803593543633076224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074157517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331123911.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s003390100903</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074157517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s003390100903-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jia, T.Q.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Threshold of femtosecond laser-induced damage in transparent materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. The rate at which conduction-band electrons (CBE) absorb laser energy is calculated by both the quantum mechanical and the classical methods. Here fused silica irradiated with a 780-nm femtosecond-pulse laser is used as an example. It is found that the rate obtained by the quantum mechanical method is about one-third of that by the classical method, and it is much less than the direct-current limit. In the flux-doubling model, the avalanche rate in fused silica is 4 I $ ps^{-1} $ obtained by the quantum mechanical method, while it is about 13.7 I $ ps^{-1} $ by the classical method, where the laser intensity I is in units of TW $ cm^{-2} $. The differential equation of the evolution of CBE density is solved numerically, and it is found that the combination of CBE–hole recombination, CBE diffusion and initial CBE density (<$ 10^{13} $ $ cm^{-3} $) is not important. The dependence of avalanche breakdown threshold on laser-pulse duration is presented. The threshold calculated by the quantum mechanical method agrees well with experimental results, while the threshold obtained by the classical method differs greatly from the experiments.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, R.X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Z.Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">74(2002), 4 vom: Apr., Seite 503-507</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:503-507</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s003390100903</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2002</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">503-507</subfield></datafield></record></collection>
|
score |
7.4020205 |