Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films
Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor compon...
Ausführliche Beschreibung
Autor*in: |
Baldus, O. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer-Verlag, 1981, 80(2004), 7 vom: 06. Juli, Seite 1553-1562 |
---|---|
Übergeordnetes Werk: |
volume:80 ; year:2004 ; number:7 ; day:06 ; month:07 ; pages:1553-1562 |
Links: |
---|
DOI / URN: |
10.1007/s00339-004-2904-7 |
---|
Katalog-ID: |
OLC2074171234 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074171234 | ||
003 | DE-627 | ||
005 | 20230331124938.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-004-2904-7 |2 doi | |
035 | |a (DE-627)OLC2074171234 | ||
035 | |a (DE-He213)s00339-004-2904-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Baldus, O. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2004 | ||
520 | |a Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. | ||
650 | 4 | |a Crystallization Kinetic | |
650 | 4 | |a Amorphous Film | |
650 | 4 | |a Strontium Titanate | |
650 | 4 | |a Barium Strontium Titanate | |
650 | 4 | |a Titanate Thin Film | |
700 | 1 | |a Waser, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer-Verlag, 1981 |g 80(2004), 7 vom: 06. Juli, Seite 1553-1562 |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:80 |g year:2004 |g number:7 |g day:06 |g month:07 |g pages:1553-1562 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-004-2904-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 80 |j 2004 |e 7 |b 06 |c 07 |h 1553-1562 |
author_variant |
o b ob r w rw |
---|---|
matchkey_str |
article:09478396:2004----::xeietlnnmrclnetgtosfetrnpradrsalztokntcilsrnuemdfct |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s00339-004-2904-7 doi (DE-627)OLC2074171234 (DE-He213)s00339-004-2904-7-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Baldus, O. verfasserin aut Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film Waser, R. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 80(2004), 7 vom: 06. Juli, Seite 1553-1562 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 https://doi.org/10.1007/s00339-004-2904-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 80 2004 7 06 07 1553-1562 |
spelling |
10.1007/s00339-004-2904-7 doi (DE-627)OLC2074171234 (DE-He213)s00339-004-2904-7-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Baldus, O. verfasserin aut Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film Waser, R. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 80(2004), 7 vom: 06. Juli, Seite 1553-1562 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 https://doi.org/10.1007/s00339-004-2904-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 80 2004 7 06 07 1553-1562 |
allfields_unstemmed |
10.1007/s00339-004-2904-7 doi (DE-627)OLC2074171234 (DE-He213)s00339-004-2904-7-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Baldus, O. verfasserin aut Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film Waser, R. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 80(2004), 7 vom: 06. Juli, Seite 1553-1562 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 https://doi.org/10.1007/s00339-004-2904-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 80 2004 7 06 07 1553-1562 |
allfieldsGer |
10.1007/s00339-004-2904-7 doi (DE-627)OLC2074171234 (DE-He213)s00339-004-2904-7-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Baldus, O. verfasserin aut Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film Waser, R. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 80(2004), 7 vom: 06. Juli, Seite 1553-1562 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 https://doi.org/10.1007/s00339-004-2904-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 80 2004 7 06 07 1553-1562 |
allfieldsSound |
10.1007/s00339-004-2904-7 doi (DE-627)OLC2074171234 (DE-He213)s00339-004-2904-7-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Baldus, O. verfasserin aut Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2004 Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film Waser, R. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 80(2004), 7 vom: 06. Juli, Seite 1553-1562 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 https://doi.org/10.1007/s00339-004-2904-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 80 2004 7 06 07 1553-1562 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 80(2004), 7 vom: 06. Juli, Seite 1553-1562 volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 80(2004), 7 vom: 06. Juli, Seite 1553-1562 volume:80 year:2004 number:7 day:06 month:07 pages:1553-1562 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Baldus, O. @@aut@@ Waser, R. @@aut@@ |
publishDateDaySort_date |
2004-07-06T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2074171234 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074171234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331124938.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-004-2904-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074171234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-004-2904-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baldus, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization Kinetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barium Strontium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanate Thin Film</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waser, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">80(2004), 7 vom: 06. Juli, Seite 1553-1562</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:7</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1553-1562</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-004-2904-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2004</subfield><subfield code="e">7</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield><subfield code="h">1553-1562</subfield></datafield></record></collection>
|
author |
Baldus, O. |
spellingShingle |
Baldus, O. ddc 530 rvk UA 9001.A misc Crystallization Kinetic misc Amorphous Film misc Strontium Titanate misc Barium Strontium Titanate misc Titanate Thin Film Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
authorStr |
Baldus, O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films Crystallization Kinetic Amorphous Film Strontium Titanate Barium Strontium Titanate Titanate Thin Film |
topic |
ddc 530 rvk UA 9001.A misc Crystallization Kinetic misc Amorphous Film misc Strontium Titanate misc Barium Strontium Titanate misc Titanate Thin Film |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc Crystallization Kinetic misc Amorphous Film misc Strontium Titanate misc Barium Strontium Titanate misc Titanate Thin Film |
topic_browse |
ddc 530 rvk UA 9001.A misc Crystallization Kinetic misc Amorphous Film misc Strontium Titanate misc Barium Strontium Titanate misc Titanate Thin Film |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
ctrlnum |
(DE-627)OLC2074171234 (DE-He213)s00339-004-2904-7-p |
title_full |
Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
author_sort |
Baldus, O. |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
1553 |
author_browse |
Baldus, O. Waser, R. |
container_volume |
80 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Baldus, O. |
doi_str_mv |
10.1007/s00339-004-2904-7 |
dewey-full |
530 620 |
title_sort |
experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
title_auth |
Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
abstract |
Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. © Springer-Verlag 2004 |
abstractGer |
Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. © Springer-Verlag 2004 |
abstract_unstemmed |
Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples. © Springer-Verlag 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films |
url |
https://doi.org/10.1007/s00339-004-2904-7 |
remote_bool |
false |
author2 |
Waser, R. |
author2Str |
Waser, R. |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-004-2904-7 |
up_date |
2024-07-03T21:11:21.815Z |
_version_ |
1803593797409439744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074171234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331124938.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-004-2904-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074171234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-004-2904-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baldus, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental and numerical investigations of heat transport and crystallization kinetics in laser-induced modification of barium strontium titanate thin films</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Barium strontium titanate (BST) has a large application potential in microelectronics due to its implementation as a high-permittivity dielectric in thin-film capacitors. Technologies are therefore being investigated for the deposition of the ceramics as thin films onto semiconductor components. A two-step process will be presented in this paper: first, the deposition of an amorphous ceramic thin film on a platinum-coated silicon wafer and, secondly, the laser sintering of this film. A laser process with pulsed UV light of 248-nm and 193-nm wavelength and approximately 20-ns pulse length allows us to reduce the thermal load on the substrate during the sintering process by minimizing the interaction time between the heating source and the ceramic layer. The goal of this work is to investigate fundamental aspects of the solid-state physics and process technology during the laser sintering of amorphous, electroceramic thin films. Adjusting the film thicknesses prevents damage to the ceramic thin films by the laser treatment. Planar test structures are manufactured and characterized structurally and electrically. Characterization of the BST films reveals clearly improved dielectric properties in comparison to the amorphous films. The real part of the dielectric constant can be raised three- to fivefold at 10 kHz, while the imaginary part decreases by nearly an order of magnitude. Chemical analysis does not indicate any significant changes in the stoichiometry of the thin films due to the laser process. The laser-induced changes proceed similarly to the crystallization of the amorphous films in the furnace. Parallel to the experimental work, a numerical simulation model is developed, which, on the basis of thermal conduction, the Johnson–Mehl–Avrami crystallization kinetics, and thermoelasticity, models the temperature, crystallization, and mechanical load of the thin films. The simulation calculations are correlated with the results of the analysis of the laser-treated samples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization Kinetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barium Strontium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanate Thin Film</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waser, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">80(2004), 7 vom: 06. Juli, Seite 1553-1562</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:7</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1553-1562</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-004-2904-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2004</subfield><subfield code="e">7</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield><subfield code="h">1553-1562</subfield></datafield></record></collection>
|
score |
7.400755 |