Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning
Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) mod...
Ausführliche Beschreibung
Autor*in: |
Wang, Z.B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer-Verlag, 1981, 89(2007), 2 vom: 21. Juni, Seite 363-368 |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2007 ; number:2 ; day:21 ; month:06 ; pages:363-368 |
Links: |
---|
DOI / URN: |
10.1007/s00339-007-4114-6 |
---|
Katalog-ID: |
OLC2074182643 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074182643 | ||
003 | DE-627 | ||
005 | 20230506020433.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-007-4114-6 |2 doi | |
035 | |a (DE-627)OLC2074182643 | ||
035 | |a (DE-He213)s00339-007-4114-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Wang, Z.B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2007 | ||
520 | |a Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. | ||
650 | 4 | |a Scan Tunnelling Microscopy | |
650 | 4 | |a Sample System | |
650 | 4 | |a Plasmonic Material | |
650 | 4 | |a Plasmonic System | |
650 | 4 | |a Power Loss Density | |
700 | 1 | |a Luk’yanchuk, B.S. |4 aut | |
700 | 1 | |a Li, L. |4 aut | |
700 | 1 | |a Crouse, P.L. |4 aut | |
700 | 1 | |a Liu, Z. |4 aut | |
700 | 1 | |a Dearden, G. |4 aut | |
700 | 1 | |a Watkins, K.G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer-Verlag, 1981 |g 89(2007), 2 vom: 21. Juni, Seite 363-368 |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:89 |g year:2007 |g number:2 |g day:21 |g month:06 |g pages:363-368 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-007-4114-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 89 |j 2007 |e 2 |b 21 |c 06 |h 363-368 |
author_variant |
z w zw b l bl l l ll p c pc z l zl g d gd k w kw |
---|---|
matchkey_str |
article:09478396:2007----::pianafeditiuinnnsmerclyluiaetpapeytm |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00339-007-4114-6 doi (DE-627)OLC2074182643 (DE-He213)s00339-007-4114-6-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Wang, Z.B. verfasserin aut Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density Luk’yanchuk, B.S. aut Li, L. aut Crouse, P.L. aut Liu, Z. aut Dearden, G. aut Watkins, K.G. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 89(2007), 2 vom: 21. Juni, Seite 363-368 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:89 year:2007 number:2 day:21 month:06 pages:363-368 https://doi.org/10.1007/s00339-007-4114-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 89 2007 2 21 06 363-368 |
spelling |
10.1007/s00339-007-4114-6 doi (DE-627)OLC2074182643 (DE-He213)s00339-007-4114-6-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Wang, Z.B. verfasserin aut Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density Luk’yanchuk, B.S. aut Li, L. aut Crouse, P.L. aut Liu, Z. aut Dearden, G. aut Watkins, K.G. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 89(2007), 2 vom: 21. Juni, Seite 363-368 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:89 year:2007 number:2 day:21 month:06 pages:363-368 https://doi.org/10.1007/s00339-007-4114-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 89 2007 2 21 06 363-368 |
allfields_unstemmed |
10.1007/s00339-007-4114-6 doi (DE-627)OLC2074182643 (DE-He213)s00339-007-4114-6-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Wang, Z.B. verfasserin aut Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density Luk’yanchuk, B.S. aut Li, L. aut Crouse, P.L. aut Liu, Z. aut Dearden, G. aut Watkins, K.G. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 89(2007), 2 vom: 21. Juni, Seite 363-368 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:89 year:2007 number:2 day:21 month:06 pages:363-368 https://doi.org/10.1007/s00339-007-4114-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 89 2007 2 21 06 363-368 |
allfieldsGer |
10.1007/s00339-007-4114-6 doi (DE-627)OLC2074182643 (DE-He213)s00339-007-4114-6-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Wang, Z.B. verfasserin aut Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density Luk’yanchuk, B.S. aut Li, L. aut Crouse, P.L. aut Liu, Z. aut Dearden, G. aut Watkins, K.G. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 89(2007), 2 vom: 21. Juni, Seite 363-368 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:89 year:2007 number:2 day:21 month:06 pages:363-368 https://doi.org/10.1007/s00339-007-4114-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 89 2007 2 21 06 363-368 |
allfieldsSound |
10.1007/s00339-007-4114-6 doi (DE-627)OLC2074182643 (DE-He213)s00339-007-4114-6-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Wang, Z.B. verfasserin aut Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density Luk’yanchuk, B.S. aut Li, L. aut Crouse, P.L. aut Liu, Z. aut Dearden, G. aut Watkins, K.G. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 89(2007), 2 vom: 21. Juni, Seite 363-368 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:89 year:2007 number:2 day:21 month:06 pages:363-368 https://doi.org/10.1007/s00339-007-4114-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 89 2007 2 21 06 363-368 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 89(2007), 2 vom: 21. Juni, Seite 363-368 volume:89 year:2007 number:2 day:21 month:06 pages:363-368 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 89(2007), 2 vom: 21. Juni, Seite 363-368 volume:89 year:2007 number:2 day:21 month:06 pages:363-368 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Wang, Z.B. @@aut@@ Luk’yanchuk, B.S. @@aut@@ Li, L. @@aut@@ Crouse, P.L. @@aut@@ Liu, Z. @@aut@@ Dearden, G. @@aut@@ Watkins, K.G. @@aut@@ |
publishDateDaySort_date |
2007-06-21T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2074182643 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074182643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506020433.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-007-4114-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074182643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-007-4114-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Z.B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scan Tunnelling Microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sample System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power Loss Density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luk’yanchuk, B.S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crouse, P.L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dearden, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watkins, K.G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">89(2007), 2 vom: 21. Juni, Seite 363-368</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:363-368</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-007-4114-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2007</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">06</subfield><subfield code="h">363-368</subfield></datafield></record></collection>
|
author |
Wang, Z.B. |
spellingShingle |
Wang, Z.B. ddc 530 rvk UA 9001.A misc Scan Tunnelling Microscopy misc Sample System misc Plasmonic Material misc Plasmonic System misc Power Loss Density Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning |
authorStr |
Wang, Z.B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning Scan Tunnelling Microscopy Sample System Plasmonic Material Plasmonic System Power Loss Density |
topic |
ddc 530 rvk UA 9001.A misc Scan Tunnelling Microscopy misc Sample System misc Plasmonic Material misc Plasmonic System misc Power Loss Density |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc Scan Tunnelling Microscopy misc Sample System misc Plasmonic Material misc Plasmonic System misc Power Loss Density |
topic_browse |
ddc 530 rvk UA 9001.A misc Scan Tunnelling Microscopy misc Sample System misc Plasmonic Material misc Plasmonic System misc Power Loss Density |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning |
ctrlnum |
(DE-627)OLC2074182643 (DE-He213)s00339-007-4114-6-p |
title_full |
Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning |
author_sort |
Wang, Z.B. |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
363 |
author_browse |
Wang, Z.B. Luk’yanchuk, B.S. Li, L. Crouse, P.L. Liu, Z. Dearden, G. Watkins, K.G. |
container_volume |
89 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Wang, Z.B. |
doi_str_mv |
10.1007/s00339-007-4114-6 |
dewey-full |
530 620 |
title_sort |
optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/stm nanopatterning |
title_auth |
Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning |
abstract |
Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. © Springer-Verlag 2007 |
abstractGer |
Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. © Springer-Verlag 2007 |
abstract_unstemmed |
Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted. © Springer-Verlag 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_60 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_150 GBV_ILN_170 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning |
url |
https://doi.org/10.1007/s00339-007-4114-6 |
remote_bool |
false |
author2 |
Luk’yanchuk, B.S. Li, L. Crouse, P.L. Liu, Z. Dearden, G. Watkins, K.G. |
author2Str |
Luk’yanchuk, B.S. Li, L. Crouse, P.L. Liu, Z. Dearden, G. Watkins, K.G. |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-007-4114-6 |
up_date |
2024-07-03T21:14:44.777Z |
_version_ |
1803594010228424704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074182643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506020433.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-007-4114-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074182643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-007-4114-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Z.B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical near-field distribution in an asymmetrically illuminated tip–sample system for laser/STM nanopatterning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In surface nano-patterning using an atomic force microscope (AFM) tip in scanning tunnelling microscopy (STM) mode and illuminated by a laser, two controversial physical mechanisms exist in the literature: the field-enhancement (FE) model and the thermal-induced mechanical contact (TMC) model. Due to the presence of evanescent waves in the optical near-field, the exact calculation of the field distribution of the tip–sample system in micro/nano scales becomes complicated. There is a lack of understanding of the asymmetrically illuminated tip–sample system. In this paper, full 3D finite-difference time-domain (FDTD) analysis was carried out to investigate the field distribution in different tip–sample systems. The effects of different tip/sample materials (either dielectric or plasmonic material), the gap distance, and laser incidence angles on the field distribution/enhancement have been studied. For the first time, we have demonstrated two new effects which are helpful in distinguishing the controversial mechanisms: (1) on the sample surface, the field peak position has a shift away from the tip-axis at large angles of incidence, and (2) the field enhancement could depend strongly on the horizontal component (perpendicular to tip-axis) of the incident wave instead of the vertical component (along tip-axis). The optimal incident angle is around 30° for the maximum field under the tip. The existence of field-distribution nodes on the 3D tip surface that leads to the in-homogenous heating of the tip is also predicted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scan Tunnelling Microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sample System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power Loss Density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luk’yanchuk, B.S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crouse, P.L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dearden, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watkins, K.G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">89(2007), 2 vom: 21. Juni, Seite 363-368</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:363-368</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-007-4114-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2007</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">06</subfield><subfield code="h">363-368</subfield></datafield></record></collection>
|
score |
7.401534 |