Inherent diode isolation in programmable metallization cell resistive memory elements
Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches...
Ausführliche Beschreibung
Autor*in: |
Puthentheradam, Sarath C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer-Verlag, 1981, 102(2011), 4 vom: 26. Jan., Seite 817-826 |
---|---|
Übergeordnetes Werk: |
volume:102 ; year:2011 ; number:4 ; day:26 ; month:01 ; pages:817-826 |
Links: |
---|
DOI / URN: |
10.1007/s00339-011-6292-5 |
---|
Katalog-ID: |
OLC2074199686 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074199686 | ||
003 | DE-627 | ||
005 | 20230331131653.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-011-6292-5 |2 doi | |
035 | |a (DE-627)OLC2074199686 | ||
035 | |a (DE-He213)s00339-011-6292-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Puthentheradam, Sarath C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inherent diode isolation in programmable metallization cell resistive memory elements |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2011 | ||
520 | |a Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. | ||
650 | 4 | |a Reverse Bias | |
650 | 4 | |a Reverse Bias Voltage | |
650 | 4 | |a Thermionic Emission Model | |
650 | 4 | |a Total Leakage Current | |
650 | 4 | |a Crossbar Architecture | |
700 | 1 | |a Schroder, Dieter K. |4 aut | |
700 | 1 | |a Kozicki, Michael N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer-Verlag, 1981 |g 102(2011), 4 vom: 26. Jan., Seite 817-826 |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:102 |g year:2011 |g number:4 |g day:26 |g month:01 |g pages:817-826 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-011-6292-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 102 |j 2011 |e 4 |b 26 |c 01 |h 817-826 |
author_variant |
s c p sc scp d k s dk dks m n k mn mnk |
---|---|
matchkey_str |
article:09478396:2011----::neetidioainnrgambeealztoclrs |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00339-011-6292-5 doi (DE-627)OLC2074199686 (DE-He213)s00339-011-6292-5-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Puthentheradam, Sarath C. verfasserin aut Inherent diode isolation in programmable metallization cell resistive memory elements 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture Schroder, Dieter K. aut Kozicki, Michael N. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 102(2011), 4 vom: 26. Jan., Seite 817-826 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:102 year:2011 number:4 day:26 month:01 pages:817-826 https://doi.org/10.1007/s00339-011-6292-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 102 2011 4 26 01 817-826 |
spelling |
10.1007/s00339-011-6292-5 doi (DE-627)OLC2074199686 (DE-He213)s00339-011-6292-5-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Puthentheradam, Sarath C. verfasserin aut Inherent diode isolation in programmable metallization cell resistive memory elements 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture Schroder, Dieter K. aut Kozicki, Michael N. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 102(2011), 4 vom: 26. Jan., Seite 817-826 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:102 year:2011 number:4 day:26 month:01 pages:817-826 https://doi.org/10.1007/s00339-011-6292-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 102 2011 4 26 01 817-826 |
allfields_unstemmed |
10.1007/s00339-011-6292-5 doi (DE-627)OLC2074199686 (DE-He213)s00339-011-6292-5-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Puthentheradam, Sarath C. verfasserin aut Inherent diode isolation in programmable metallization cell resistive memory elements 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture Schroder, Dieter K. aut Kozicki, Michael N. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 102(2011), 4 vom: 26. Jan., Seite 817-826 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:102 year:2011 number:4 day:26 month:01 pages:817-826 https://doi.org/10.1007/s00339-011-6292-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 102 2011 4 26 01 817-826 |
allfieldsGer |
10.1007/s00339-011-6292-5 doi (DE-627)OLC2074199686 (DE-He213)s00339-011-6292-5-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Puthentheradam, Sarath C. verfasserin aut Inherent diode isolation in programmable metallization cell resistive memory elements 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture Schroder, Dieter K. aut Kozicki, Michael N. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 102(2011), 4 vom: 26. Jan., Seite 817-826 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:102 year:2011 number:4 day:26 month:01 pages:817-826 https://doi.org/10.1007/s00339-011-6292-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 102 2011 4 26 01 817-826 |
allfieldsSound |
10.1007/s00339-011-6292-5 doi (DE-627)OLC2074199686 (DE-He213)s00339-011-6292-5-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Puthentheradam, Sarath C. verfasserin aut Inherent diode isolation in programmable metallization cell resistive memory elements 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture Schroder, Dieter K. aut Kozicki, Michael N. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 102(2011), 4 vom: 26. Jan., Seite 817-826 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:102 year:2011 number:4 day:26 month:01 pages:817-826 https://doi.org/10.1007/s00339-011-6292-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 102 2011 4 26 01 817-826 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 102(2011), 4 vom: 26. Jan., Seite 817-826 volume:102 year:2011 number:4 day:26 month:01 pages:817-826 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 102(2011), 4 vom: 26. Jan., Seite 817-826 volume:102 year:2011 number:4 day:26 month:01 pages:817-826 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Puthentheradam, Sarath C. @@aut@@ Schroder, Dieter K. @@aut@@ Kozicki, Michael N. @@aut@@ |
publishDateDaySort_date |
2011-01-26T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2074199686 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074199686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331131653.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-011-6292-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074199686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-011-6292-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Puthentheradam, Sarath C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inherent diode isolation in programmable metallization cell resistive memory elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse Bias</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse Bias Voltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermionic Emission Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Leakage Current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crossbar Architecture</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schroder, Dieter K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kozicki, Michael N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">102(2011), 4 vom: 26. Jan., Seite 817-826</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:26</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:817-826</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-011-6292-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">26</subfield><subfield code="c">01</subfield><subfield code="h">817-826</subfield></datafield></record></collection>
|
author |
Puthentheradam, Sarath C. |
spellingShingle |
Puthentheradam, Sarath C. ddc 530 rvk UA 9001.A misc Reverse Bias misc Reverse Bias Voltage misc Thermionic Emission Model misc Total Leakage Current misc Crossbar Architecture Inherent diode isolation in programmable metallization cell resistive memory elements |
authorStr |
Puthentheradam, Sarath C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk Inherent diode isolation in programmable metallization cell resistive memory elements Reverse Bias Reverse Bias Voltage Thermionic Emission Model Total Leakage Current Crossbar Architecture |
topic |
ddc 530 rvk UA 9001.A misc Reverse Bias misc Reverse Bias Voltage misc Thermionic Emission Model misc Total Leakage Current misc Crossbar Architecture |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc Reverse Bias misc Reverse Bias Voltage misc Thermionic Emission Model misc Total Leakage Current misc Crossbar Architecture |
topic_browse |
ddc 530 rvk UA 9001.A misc Reverse Bias misc Reverse Bias Voltage misc Thermionic Emission Model misc Total Leakage Current misc Crossbar Architecture |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
Inherent diode isolation in programmable metallization cell resistive memory elements |
ctrlnum |
(DE-627)OLC2074199686 (DE-He213)s00339-011-6292-5-p |
title_full |
Inherent diode isolation in programmable metallization cell resistive memory elements |
author_sort |
Puthentheradam, Sarath C. |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
817 |
author_browse |
Puthentheradam, Sarath C. Schroder, Dieter K. Kozicki, Michael N. |
container_volume |
102 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Puthentheradam, Sarath C. |
doi_str_mv |
10.1007/s00339-011-6292-5 |
dewey-full |
530 620 |
title_sort |
inherent diode isolation in programmable metallization cell resistive memory elements |
title_auth |
Inherent diode isolation in programmable metallization cell resistive memory elements |
abstract |
Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. © Springer-Verlag 2011 |
abstractGer |
Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. © Springer-Verlag 2011 |
abstract_unstemmed |
Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays. © Springer-Verlag 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Inherent diode isolation in programmable metallization cell resistive memory elements |
url |
https://doi.org/10.1007/s00339-011-6292-5 |
remote_bool |
false |
author2 |
Schroder, Dieter K. Kozicki, Michael N. |
author2Str |
Schroder, Dieter K. Kozicki, Michael N. |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-011-6292-5 |
up_date |
2024-07-03T21:19:31.888Z |
_version_ |
1803594311293468676 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074199686</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331131653.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-011-6292-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074199686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-011-6292-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Puthentheradam, Sarath C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inherent diode isolation in programmable metallization cell resistive memory elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The feasibility of a storage element with inherent rectifying or isolation properties for use in passive memory arrays has been demonstrated using a programmable metallization cell structure with a doped (n-type) silicon electrode. The Cu/Cu–$ SiO_{2} $/n-Si cell used in this study switches via the formation of a nanoscale Cu filament in the Cu–$ SiO_{2} $ film which results in the creation of a Cu/n-Si Schottky contact with soft reverse breakdown characteristics. The reverse bias leakage current in the on-state diode is dependent on the programming current employed as this influences the area of the electrodeposit and hence the area of the Cu/n-Si junction. The programming current also controls the on-state resistance of the device, allowing multi-level cell (MLC) operation, in which discrete resistance levels are used to represent multiple logical bits in each physical cell. The Cu/Cu–$ SiO_{2} $/n-Si elements with heavily doped silicon electrodes were readily erasable at voltage less than −5 V which allows them to be re-programmed. Lightly doped silicon electrode devices were not able to be erased due to their very high reverse breakdown voltage but exhibited extremely low leakage current levels potentially allowing them to be used in low energy one-time programmable arrays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse Bias</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse Bias Voltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermionic Emission Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Leakage Current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crossbar Architecture</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schroder, Dieter K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kozicki, Michael N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">102(2011), 4 vom: 26. Jan., Seite 817-826</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:26</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:817-826</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-011-6292-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">26</subfield><subfield code="c">01</subfield><subfield code="h">817-826</subfield></datafield></record></collection>
|
score |
7.4016485 |