A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition
Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by u...
Ausführliche Beschreibung
Autor*in: |
Martín-Sánchez, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer-Verlag, 1981, 110(2012), 3 vom: 29. Aug., Seite 585-590 |
---|---|
Übergeordnetes Werk: |
volume:110 ; year:2012 ; number:3 ; day:29 ; month:08 ; pages:585-590 |
Links: |
---|
DOI / URN: |
10.1007/s00339-012-7131-z |
---|
Katalog-ID: |
OLC2074210841 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074210841 | ||
003 | DE-627 | ||
005 | 20230331131833.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-012-7131-z |2 doi | |
035 | |a (DE-627)OLC2074210841 | ||
035 | |a (DE-He213)s00339-012-7131-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Martín-Sánchez, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2012 | ||
520 | |a Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. | ||
650 | 4 | |a Pulse Laser Deposition | |
650 | 4 | |a Plasma Plume | |
650 | 4 | |a Round Shape Particle | |
650 | 4 | |a High Resolution Atomic Force Microscopy Image | |
650 | 4 | |a Laser Beam Focal Point | |
700 | 1 | |a Chahboun, A. |4 aut | |
700 | 1 | |a Pinto, S. R. C. |4 aut | |
700 | 1 | |a Rolo, A. G. |4 aut | |
700 | 1 | |a Marques, L. |4 aut | |
700 | 1 | |a Serna, R. |4 aut | |
700 | 1 | |a Vieira, E. M. F. |4 aut | |
700 | 1 | |a Ramos, M. M. D. |4 aut | |
700 | 1 | |a Gomes, M. J. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer-Verlag, 1981 |g 110(2012), 3 vom: 29. Aug., Seite 585-590 |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:110 |g year:2012 |g number:3 |g day:29 |g month:08 |g pages:585-590 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-012-7131-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 110 |j 2012 |e 3 |b 29 |c 08 |h 585-590 |
author_variant |
j m s jms a c ac s r c p src srcp a g r ag agr l m lm r s rs e m f v emf emfv m m d r mmd mmdr m j m g mjm mjmg |
---|---|
matchkey_str |
article:09478396:2012----::saoeofxsrdcinfeaoatceiagstopee |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00339-012-7131-z doi (DE-627)OLC2074210841 (DE-He213)s00339-012-7131-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Martín-Sánchez, J. verfasserin aut A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point Chahboun, A. aut Pinto, S. R. C. aut Rolo, A. G. aut Marques, L. aut Serna, R. aut Vieira, E. M. F. aut Ramos, M. M. D. aut Gomes, M. J. M. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 110(2012), 3 vom: 29. Aug., Seite 585-590 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:110 year:2012 number:3 day:29 month:08 pages:585-590 https://doi.org/10.1007/s00339-012-7131-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 110 2012 3 29 08 585-590 |
spelling |
10.1007/s00339-012-7131-z doi (DE-627)OLC2074210841 (DE-He213)s00339-012-7131-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Martín-Sánchez, J. verfasserin aut A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point Chahboun, A. aut Pinto, S. R. C. aut Rolo, A. G. aut Marques, L. aut Serna, R. aut Vieira, E. M. F. aut Ramos, M. M. D. aut Gomes, M. J. M. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 110(2012), 3 vom: 29. Aug., Seite 585-590 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:110 year:2012 number:3 day:29 month:08 pages:585-590 https://doi.org/10.1007/s00339-012-7131-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 110 2012 3 29 08 585-590 |
allfields_unstemmed |
10.1007/s00339-012-7131-z doi (DE-627)OLC2074210841 (DE-He213)s00339-012-7131-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Martín-Sánchez, J. verfasserin aut A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point Chahboun, A. aut Pinto, S. R. C. aut Rolo, A. G. aut Marques, L. aut Serna, R. aut Vieira, E. M. F. aut Ramos, M. M. D. aut Gomes, M. J. M. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 110(2012), 3 vom: 29. Aug., Seite 585-590 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:110 year:2012 number:3 day:29 month:08 pages:585-590 https://doi.org/10.1007/s00339-012-7131-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 110 2012 3 29 08 585-590 |
allfieldsGer |
10.1007/s00339-012-7131-z doi (DE-627)OLC2074210841 (DE-He213)s00339-012-7131-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Martín-Sánchez, J. verfasserin aut A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point Chahboun, A. aut Pinto, S. R. C. aut Rolo, A. G. aut Marques, L. aut Serna, R. aut Vieira, E. M. F. aut Ramos, M. M. D. aut Gomes, M. J. M. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 110(2012), 3 vom: 29. Aug., Seite 585-590 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:110 year:2012 number:3 day:29 month:08 pages:585-590 https://doi.org/10.1007/s00339-012-7131-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 110 2012 3 29 08 585-590 |
allfieldsSound |
10.1007/s00339-012-7131-z doi (DE-627)OLC2074210841 (DE-He213)s00339-012-7131-z-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Martín-Sánchez, J. verfasserin aut A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point Chahboun, A. aut Pinto, S. R. C. aut Rolo, A. G. aut Marques, L. aut Serna, R. aut Vieira, E. M. F. aut Ramos, M. M. D. aut Gomes, M. J. M. aut Enthalten in Applied physics. A, Materials science & processing Springer-Verlag, 1981 110(2012), 3 vom: 29. Aug., Seite 585-590 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:110 year:2012 number:3 day:29 month:08 pages:585-590 https://doi.org/10.1007/s00339-012-7131-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 110 2012 3 29 08 585-590 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 110(2012), 3 vom: 29. Aug., Seite 585-590 volume:110 year:2012 number:3 day:29 month:08 pages:585-590 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 110(2012), 3 vom: 29. Aug., Seite 585-590 volume:110 year:2012 number:3 day:29 month:08 pages:585-590 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Martín-Sánchez, J. @@aut@@ Chahboun, A. @@aut@@ Pinto, S. R. C. @@aut@@ Rolo, A. G. @@aut@@ Marques, L. @@aut@@ Serna, R. @@aut@@ Vieira, E. M. F. @@aut@@ Ramos, M. M. D. @@aut@@ Gomes, M. J. M. @@aut@@ |
publishDateDaySort_date |
2012-08-29T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2074210841 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074210841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331131833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-012-7131-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074210841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-012-7131-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martín-Sánchez, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulse Laser Deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Plume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Round Shape Particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Atomic Force Microscopy Image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser Beam Focal Point</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chahboun, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinto, S. R. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rolo, A. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marques, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Serna, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vieira, E. M. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramos, M. M. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, M. J. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">110(2012), 3 vom: 29. Aug., Seite 585-590</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:29</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:585-590</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-012-7131-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">29</subfield><subfield code="c">08</subfield><subfield code="h">585-590</subfield></datafield></record></collection>
|
author |
Martín-Sánchez, J. |
spellingShingle |
Martín-Sánchez, J. ddc 530 rvk UA 9001.A misc Pulse Laser Deposition misc Plasma Plume misc Round Shape Particle misc High Resolution Atomic Force Microscopy Image misc Laser Beam Focal Point A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition |
authorStr |
Martín-Sánchez, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition Pulse Laser Deposition Plasma Plume Round Shape Particle High Resolution Atomic Force Microscopy Image Laser Beam Focal Point |
topic |
ddc 530 rvk UA 9001.A misc Pulse Laser Deposition misc Plasma Plume misc Round Shape Particle misc High Resolution Atomic Force Microscopy Image misc Laser Beam Focal Point |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc Pulse Laser Deposition misc Plasma Plume misc Round Shape Particle misc High Resolution Atomic Force Microscopy Image misc Laser Beam Focal Point |
topic_browse |
ddc 530 rvk UA 9001.A misc Pulse Laser Deposition misc Plasma Plume misc Round Shape Particle misc High Resolution Atomic Force Microscopy Image misc Laser Beam Focal Point |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition |
ctrlnum |
(DE-627)OLC2074210841 (DE-He213)s00339-012-7131-z-p |
title_full |
A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition |
author_sort |
Martín-Sánchez, J. |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
585 |
author_browse |
Martín-Sánchez, J. Chahboun, A. Pinto, S. R. C. Rolo, A. G. Marques, L. Serna, R. Vieira, E. M. F. Ramos, M. M. D. Gomes, M. J. M. |
container_volume |
110 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Martín-Sánchez, J. |
doi_str_mv |
10.1007/s00339-012-7131-z |
dewey-full |
530 620 |
title_sort |
a shadowed off-axis production of ge nanoparticles in ar gas atmosphere by pulsed laser deposition |
title_auth |
A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition |
abstract |
Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. © Springer-Verlag 2012 |
abstractGer |
Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. © Springer-Verlag 2012 |
abstract_unstemmed |
Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions. © Springer-Verlag 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
3 |
title_short |
A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition |
url |
https://doi.org/10.1007/s00339-012-7131-z |
remote_bool |
false |
author2 |
Chahboun, A. Pinto, S. R. C. Rolo, A. G. Marques, L. Serna, R. Vieira, E. M. F. Ramos, M. M. D. Gomes, M. J. M. |
author2Str |
Chahboun, A. Pinto, S. R. C. Rolo, A. G. Marques, L. Serna, R. Vieira, E. M. F. Ramos, M. M. D. Gomes, M. J. M. |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-012-7131-z |
up_date |
2024-07-03T21:22:36.437Z |
_version_ |
1803594504799780864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074210841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331131833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-012-7131-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074210841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-012-7131-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martín-Sánchez, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work, we report on the production of Ge nanoparticles (NPs) in an inert Ar gas atmosphere by pulsed laser deposition (PLD) at room temperature (RT). The direct deposition of energetic particles/droplets resulting from the ablation process of the target material has been avoided by using an original and customized off-axis shadow mask (shadowed off-axis) deposition set-up where the NPs deposition on the substrate takes place by means of scattering between the NPs formed in the vapor phase and the background Ar atoms. It is found that the Ar gas pressure parameter has a relevant role in the crystallization process, with better crystallinity obtained as the background Ar pressure is raised for the given experimental conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulse Laser Deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Plume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Round Shape Particle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Atomic Force Microscopy Image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser Beam Focal Point</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chahboun, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinto, S. R. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rolo, A. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marques, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Serna, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vieira, E. M. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramos, M. M. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, M. J. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">110(2012), 3 vom: 29. Aug., Seite 585-590</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:29</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:585-590</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-012-7131-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">29</subfield><subfield code="c">08</subfield><subfield code="h">585-590</subfield></datafield></record></collection>
|
score |
7.401664 |