The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer
Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped...
Ausführliche Beschreibung
Autor*in: |
Qin, Dashan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer Berlin Heidelberg, 1981, 120(2015), 2 vom: 19. Mai, Seite 651-655 |
---|---|
Übergeordnetes Werk: |
volume:120 ; year:2015 ; number:2 ; day:19 ; month:05 ; pages:651-655 |
Links: |
---|
DOI / URN: |
10.1007/s00339-015-9233-x |
---|
Katalog-ID: |
OLC2074229992 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074229992 | ||
003 | DE-627 | ||
005 | 20230331132137.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-015-9233-x |2 doi | |
035 | |a (DE-627)OLC2074229992 | ||
035 | |a (DE-He213)s00339-015-9233-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Qin, Dashan |e verfasserin |4 aut | |
245 | 1 | 0 | |a The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. | ||
650 | 4 | |a MoO3 | |
650 | 4 | |a High Occupied Molecular Orbital | |
650 | 4 | |a Driving Voltage | |
650 | 4 | |a Hole Conduction | |
650 | 4 | |a Hole Transport Layer | |
700 | 1 | |a Jin, Song |4 aut | |
700 | 1 | |a Chen, Yuhuan |4 aut | |
700 | 1 | |a Wang, Wenbo |4 aut | |
700 | 1 | |a Chen, Li |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer Berlin Heidelberg, 1981 |g 120(2015), 2 vom: 19. Mai, Seite 651-655 |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:120 |g year:2015 |g number:2 |g day:19 |g month:05 |g pages:651-655 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-015-9233-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 120 |j 2015 |e 2 |b 19 |c 05 |h 651-655 |
author_variant |
d q dq s j sj y c yc w w ww l c lc |
---|---|
matchkey_str |
article:09478396:2015----::hipoepromnennetdrailgtmtigidssnteyrd |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00339-015-9233-x doi (DE-627)OLC2074229992 (DE-He213)s00339-015-9233-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Qin, Dashan verfasserin aut The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer Jin, Song aut Chen, Yuhuan aut Wang, Wenbo aut Chen, Li aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 120(2015), 2 vom: 19. Mai, Seite 651-655 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:120 year:2015 number:2 day:19 month:05 pages:651-655 https://doi.org/10.1007/s00339-015-9233-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 120 2015 2 19 05 651-655 |
spelling |
10.1007/s00339-015-9233-x doi (DE-627)OLC2074229992 (DE-He213)s00339-015-9233-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Qin, Dashan verfasserin aut The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer Jin, Song aut Chen, Yuhuan aut Wang, Wenbo aut Chen, Li aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 120(2015), 2 vom: 19. Mai, Seite 651-655 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:120 year:2015 number:2 day:19 month:05 pages:651-655 https://doi.org/10.1007/s00339-015-9233-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 120 2015 2 19 05 651-655 |
allfields_unstemmed |
10.1007/s00339-015-9233-x doi (DE-627)OLC2074229992 (DE-He213)s00339-015-9233-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Qin, Dashan verfasserin aut The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer Jin, Song aut Chen, Yuhuan aut Wang, Wenbo aut Chen, Li aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 120(2015), 2 vom: 19. Mai, Seite 651-655 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:120 year:2015 number:2 day:19 month:05 pages:651-655 https://doi.org/10.1007/s00339-015-9233-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 120 2015 2 19 05 651-655 |
allfieldsGer |
10.1007/s00339-015-9233-x doi (DE-627)OLC2074229992 (DE-He213)s00339-015-9233-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Qin, Dashan verfasserin aut The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer Jin, Song aut Chen, Yuhuan aut Wang, Wenbo aut Chen, Li aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 120(2015), 2 vom: 19. Mai, Seite 651-655 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:120 year:2015 number:2 day:19 month:05 pages:651-655 https://doi.org/10.1007/s00339-015-9233-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 120 2015 2 19 05 651-655 |
allfieldsSound |
10.1007/s00339-015-9233-x doi (DE-627)OLC2074229992 (DE-He213)s00339-015-9233-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Qin, Dashan verfasserin aut The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer Jin, Song aut Chen, Yuhuan aut Wang, Wenbo aut Chen, Li aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 120(2015), 2 vom: 19. Mai, Seite 651-655 (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:120 year:2015 number:2 day:19 month:05 pages:651-655 https://doi.org/10.1007/s00339-015-9233-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 UA 9001.A AR 120 2015 2 19 05 651-655 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 120(2015), 2 vom: 19. Mai, Seite 651-655 volume:120 year:2015 number:2 day:19 month:05 pages:651-655 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 120(2015), 2 vom: 19. Mai, Seite 651-655 volume:120 year:2015 number:2 day:19 month:05 pages:651-655 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Qin, Dashan @@aut@@ Jin, Song @@aut@@ Chen, Yuhuan @@aut@@ Wang, Wenbo @@aut@@ Chen, Li @@aut@@ |
publishDateDaySort_date |
2015-05-19T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2074229992 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074229992</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331132137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-015-9233-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074229992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-015-9233-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qin, Dashan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoO3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Occupied Molecular Orbital</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driving Voltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole Conduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole Transport Layer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Song</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yuhuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wenbo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">120(2015), 2 vom: 19. Mai, Seite 651-655</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:19</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:651-655</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-015-9233-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">19</subfield><subfield code="c">05</subfield><subfield code="h">651-655</subfield></datafield></record></collection>
|
author |
Qin, Dashan |
spellingShingle |
Qin, Dashan ddc 530 rvk UA 9001.A misc MoO3 misc High Occupied Molecular Orbital misc Driving Voltage misc Hole Conduction misc Hole Transport Layer The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
authorStr |
Qin, Dashan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer MoO3 High Occupied Molecular Orbital Driving Voltage Hole Conduction Hole Transport Layer |
topic |
ddc 530 rvk UA 9001.A misc MoO3 misc High Occupied Molecular Orbital misc Driving Voltage misc Hole Conduction misc Hole Transport Layer |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc MoO3 misc High Occupied Molecular Orbital misc Driving Voltage misc Hole Conduction misc Hole Transport Layer |
topic_browse |
ddc 530 rvk UA 9001.A misc MoO3 misc High Occupied Molecular Orbital misc Driving Voltage misc Hole Conduction misc Hole Transport Layer |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
ctrlnum |
(DE-627)OLC2074229992 (DE-He213)s00339-015-9233-x-p |
title_full |
The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
author_sort |
Qin, Dashan |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
651 |
author_browse |
Qin, Dashan Jin, Song Chen, Yuhuan Wang, Wenbo Chen, Li |
container_volume |
120 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Qin, Dashan |
doi_str_mv |
10.1007/s00339-015-9233-x |
dewey-full |
530 620 |
title_sort |
the improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
title_auth |
The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
abstract |
Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
2 |
title_short |
The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer |
url |
https://doi.org/10.1007/s00339-015-9233-x |
remote_bool |
false |
author2 |
Jin, Song Chen, Yuhuan Wang, Wenbo Chen, Li |
author2Str |
Jin, Song Chen, Yuhuan Wang, Wenbo Chen, Li |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-015-9233-x |
up_date |
2024-07-03T21:27:56.212Z |
_version_ |
1803594840106074112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074229992</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331132137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-015-9233-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074229992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-015-9233-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qin, Dashan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of $ MoO_{3} $-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:$ MoO_{3} $) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:$ F_{4} $-TCNQ). Compared with the IOLED using the 20 nm NPB:$ MoO_{3} $/Al, the one using the 10 nm NPB:$ F_{4} $-TCNQ/10 nm NPB:$ MoO_{3} $/Al showed increased performance, attributed to the higher conductivity of NPB:$ F_{4} $-TCNQ than NPB:$ MoO_{3} $, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:$ MoO_{3} $ than through the 20 nm NPB:$ MoO_{3} $; it also presented improved performance than the IOLED using the 20 nm NPB:$ F_{4} $-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:$ F_{4} $-TCNQ and Al, resulting from that the p-doping effect of $ F_{4} $-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoO3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Occupied Molecular Orbital</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driving Voltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole Conduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole Transport Layer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Song</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yuhuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wenbo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">120(2015), 2 vom: 19. Mai, Seite 651-655</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:19</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:651-655</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-015-9233-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">19</subfield><subfield code="c">05</subfield><subfield code="h">651-655</subfield></datafield></record></collection>
|
score |
7.401991 |