Noise reduction in optically pumped magnetometer assemblies
Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (F...
Ausführliche Beschreibung
Autor*in: |
Schultze, V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. B, Lasers and optics - Springer-Verlag, 1981, 100(2010), 4 vom: 30. Mai, Seite 717-724 |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2010 ; number:4 ; day:30 ; month:05 ; pages:717-724 |
Links: |
---|
DOI / URN: |
10.1007/s00340-010-4084-9 |
---|
Katalog-ID: |
OLC2074299508 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074299508 | ||
003 | DE-627 | ||
005 | 20230331133213.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00340-010-4084-9 |2 doi | |
035 | |a (DE-627)OLC2074299508 | ||
035 | |a (DE-He213)s00340-010-4084-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001 |q VZ |2 rvk | ||
100 | 1 | |a Schultze, V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Noise reduction in optically pumped magnetometer assemblies |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. | ||
650 | 4 | |a Noise Reduction | |
650 | 4 | |a Shot Noise | |
650 | 4 | |a Larmor Frequency | |
650 | 4 | |a Photo Current | |
650 | 4 | |a Coherent Population Trapping | |
700 | 1 | |a IJsselsteijn, R. |4 aut | |
700 | 1 | |a Meyer, H.-G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. B, Lasers and optics |d Springer-Verlag, 1981 |g 100(2010), 4 vom: 30. Mai, Seite 717-724 |w (DE-627)130297682 |w (DE-600)579693-3 |w (DE-576)015877272 |x 0946-2171 |7 nnns |
773 | 1 | 8 | |g volume:100 |g year:2010 |g number:4 |g day:30 |g month:05 |g pages:717-724 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00340-010-4084-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a UA 9001 |
951 | |a AR | ||
952 | |d 100 |j 2010 |e 4 |b 30 |c 05 |h 717-724 |
author_variant |
v s vs r i ri h g m hgm |
---|---|
matchkey_str |
article:09462171:2010----::osrdcinnpialpmemgeo |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00340-010-4084-9 doi (DE-627)OLC2074299508 (DE-He213)s00340-010-4084-9-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Schultze, V. verfasserin aut Noise reduction in optically pumped magnetometer assemblies 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping IJsselsteijn, R. aut Meyer, H.-G. aut Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 100(2010), 4 vom: 30. Mai, Seite 717-724 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:100 year:2010 number:4 day:30 month:05 pages:717-724 https://doi.org/10.1007/s00340-010-4084-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 100 2010 4 30 05 717-724 |
spelling |
10.1007/s00340-010-4084-9 doi (DE-627)OLC2074299508 (DE-He213)s00340-010-4084-9-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Schultze, V. verfasserin aut Noise reduction in optically pumped magnetometer assemblies 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping IJsselsteijn, R. aut Meyer, H.-G. aut Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 100(2010), 4 vom: 30. Mai, Seite 717-724 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:100 year:2010 number:4 day:30 month:05 pages:717-724 https://doi.org/10.1007/s00340-010-4084-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 100 2010 4 30 05 717-724 |
allfields_unstemmed |
10.1007/s00340-010-4084-9 doi (DE-627)OLC2074299508 (DE-He213)s00340-010-4084-9-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Schultze, V. verfasserin aut Noise reduction in optically pumped magnetometer assemblies 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping IJsselsteijn, R. aut Meyer, H.-G. aut Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 100(2010), 4 vom: 30. Mai, Seite 717-724 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:100 year:2010 number:4 day:30 month:05 pages:717-724 https://doi.org/10.1007/s00340-010-4084-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 100 2010 4 30 05 717-724 |
allfieldsGer |
10.1007/s00340-010-4084-9 doi (DE-627)OLC2074299508 (DE-He213)s00340-010-4084-9-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Schultze, V. verfasserin aut Noise reduction in optically pumped magnetometer assemblies 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping IJsselsteijn, R. aut Meyer, H.-G. aut Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 100(2010), 4 vom: 30. Mai, Seite 717-724 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:100 year:2010 number:4 day:30 month:05 pages:717-724 https://doi.org/10.1007/s00340-010-4084-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 100 2010 4 30 05 717-724 |
allfieldsSound |
10.1007/s00340-010-4084-9 doi (DE-627)OLC2074299508 (DE-He213)s00340-010-4084-9-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Schultze, V. verfasserin aut Noise reduction in optically pumped magnetometer assemblies 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping IJsselsteijn, R. aut Meyer, H.-G. aut Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 100(2010), 4 vom: 30. Mai, Seite 717-724 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:100 year:2010 number:4 day:30 month:05 pages:717-724 https://doi.org/10.1007/s00340-010-4084-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 100 2010 4 30 05 717-724 |
language |
English |
source |
Enthalten in Applied physics. B, Lasers and optics 100(2010), 4 vom: 30. Mai, Seite 717-724 volume:100 year:2010 number:4 day:30 month:05 pages:717-724 |
sourceStr |
Enthalten in Applied physics. B, Lasers and optics 100(2010), 4 vom: 30. Mai, Seite 717-724 volume:100 year:2010 number:4 day:30 month:05 pages:717-724 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. B, Lasers and optics |
authorswithroles_txt_mv |
Schultze, V. @@aut@@ IJsselsteijn, R. @@aut@@ Meyer, H.-G. @@aut@@ |
publishDateDaySort_date |
2010-05-30T00:00:00Z |
hierarchy_top_id |
130297682 |
dewey-sort |
3530 |
id |
OLC2074299508 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074299508</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331133213.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00340-010-4084-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074299508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00340-010-4084-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schultze, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noise reduction in optically pumped magnetometer assemblies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shot Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Larmor Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photo Current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent Population Trapping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">IJsselsteijn, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, H.-G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. B, Lasers and optics</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">100(2010), 4 vom: 30. Mai, Seite 717-724</subfield><subfield code="w">(DE-627)130297682</subfield><subfield code="w">(DE-600)579693-3</subfield><subfield code="w">(DE-576)015877272</subfield><subfield code="x">0946-2171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:717-724</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00340-010-4084-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2010</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">05</subfield><subfield code="h">717-724</subfield></datafield></record></collection>
|
author |
Schultze, V. |
spellingShingle |
Schultze, V. ddc 530 rvk UA 9001 misc Noise Reduction misc Shot Noise misc Larmor Frequency misc Photo Current misc Coherent Population Trapping Noise reduction in optically pumped magnetometer assemblies |
authorStr |
Schultze, V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130297682 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-2171 |
topic_title |
530 620 VZ 530 VZ UA 9001 VZ rvk Noise reduction in optically pumped magnetometer assemblies Noise Reduction Shot Noise Larmor Frequency Photo Current Coherent Population Trapping |
topic |
ddc 530 rvk UA 9001 misc Noise Reduction misc Shot Noise misc Larmor Frequency misc Photo Current misc Coherent Population Trapping |
topic_unstemmed |
ddc 530 rvk UA 9001 misc Noise Reduction misc Shot Noise misc Larmor Frequency misc Photo Current misc Coherent Population Trapping |
topic_browse |
ddc 530 rvk UA 9001 misc Noise Reduction misc Shot Noise misc Larmor Frequency misc Photo Current misc Coherent Population Trapping |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. B, Lasers and optics |
hierarchy_parent_id |
130297682 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. B, Lasers and optics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 |
title |
Noise reduction in optically pumped magnetometer assemblies |
ctrlnum |
(DE-627)OLC2074299508 (DE-He213)s00340-010-4084-9-p |
title_full |
Noise reduction in optically pumped magnetometer assemblies |
author_sort |
Schultze, V. |
journal |
Applied physics. B, Lasers and optics |
journalStr |
Applied physics. B, Lasers and optics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
717 |
author_browse |
Schultze, V. IJsselsteijn, R. Meyer, H.-G. |
container_volume |
100 |
class |
530 620 VZ 530 VZ UA 9001 VZ rvk |
format_se |
Aufsätze |
author-letter |
Schultze, V. |
doi_str_mv |
10.1007/s00340-010-4084-9 |
dewey-full |
530 620 |
title_sort |
noise reduction in optically pumped magnetometer assemblies |
title_auth |
Noise reduction in optically pumped magnetometer assemblies |
abstract |
Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. © Springer-Verlag 2010 |
abstractGer |
Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 |
container_issue |
4 |
title_short |
Noise reduction in optically pumped magnetometer assemblies |
url |
https://doi.org/10.1007/s00340-010-4084-9 |
remote_bool |
false |
author2 |
IJsselsteijn, R. Meyer, H.-G. |
author2Str |
IJsselsteijn, R. Meyer, H.-G. |
ppnlink |
130297682 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00340-010-4084-9 |
up_date |
2024-07-03T21:45:11.755Z |
_version_ |
1803595925953708032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074299508</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331133213.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00340-010-4084-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074299508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00340-010-4084-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schultze, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noise reduction in optically pumped magnetometer assemblies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In most magnetic field measurement configurations the resolution of optically pumped magnetometers is limited by the shot noise of the pump light. However, in practice this noise limit is overwhelmed by other sources. One of them is the conversion of the pump laser’s frequency modulation (FM) noise to amplitude modulation (AM) noise due to the absorption in the magnetometer’s alkali vapour cell. This extra noise can be nearly completely cancelled by the illumination of an additional cell with the same laser light and the subtraction of its photo current from that of the measurement cell. The correlation of the photo signals of different cells is just slightly decreased by the applied measurement and rf fields B0 and B1, respectively. As a result, in real magnetic field measurements using the photo-current subtraction, a noise-limited magnetic field resolution of just twice the shot-noise limit can be achieved. This is experimentally shown for the most thrifty setup with two cells; one time using the second cell just for the photo-current subtraction, the other time also serving for magnetic field measurements, forming a gradiometer with the first cell. Yet, the photo-current subtraction method is most appealing for magnetometer arrays, where the photo signal of just one additional vapour cell can be used for the noise reduction of the complete array.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shot Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Larmor Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photo Current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent Population Trapping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">IJsselsteijn, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, H.-G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. B, Lasers and optics</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">100(2010), 4 vom: 30. Mai, Seite 717-724</subfield><subfield code="w">(DE-627)130297682</subfield><subfield code="w">(DE-600)579693-3</subfield><subfield code="w">(DE-576)015877272</subfield><subfield code="x">0946-2171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:717-724</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00340-010-4084-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2010</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">05</subfield><subfield code="h">717-724</subfield></datafield></record></collection>
|
score |
7.401374 |