A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope
Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we ill...
Ausführliche Beschreibung
Autor*in: |
Andersson, S. B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. B, Lasers and optics - Springer-Verlag, 1981, 104(2011), 1 vom: 10. Mai, Seite 161-173 |
---|---|
Übergeordnetes Werk: |
volume:104 ; year:2011 ; number:1 ; day:10 ; month:05 ; pages:161-173 |
Links: |
---|
DOI / URN: |
10.1007/s00340-011-4514-3 |
---|
Katalog-ID: |
OLC2074303238 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074303238 | ||
003 | DE-627 | ||
005 | 20230331133321.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00340-011-4514-3 |2 doi | |
035 | |a (DE-627)OLC2074303238 | ||
035 | |a (DE-He213)s00340-011-4514-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001 |q VZ |2 rvk | ||
100 | 1 | |a Andersson, S. B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2011 | ||
520 | |a Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). | ||
650 | 4 | |a Focal Point | |
650 | 4 | |a Point Spread Function | |
650 | 4 | |a Controller Parameter | |
650 | 4 | |a Focal Volume | |
650 | 4 | |a Tracking Controller | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. B, Lasers and optics |d Springer-Verlag, 1981 |g 104(2011), 1 vom: 10. Mai, Seite 161-173 |w (DE-627)130297682 |w (DE-600)579693-3 |w (DE-576)015877272 |x 0946-2171 |7 nnns |
773 | 1 | 8 | |g volume:104 |g year:2011 |g number:1 |g day:10 |g month:05 |g pages:161-173 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00340-011-4514-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a UA 9001 |
951 | |a AR | ||
952 | |d 104 |j 2011 |e 1 |b 10 |c 05 |h 161-173 |
author_variant |
s b a sb sba |
---|---|
matchkey_str |
article:09462171:2011----::nnierotolrotreiesoataknoaloecnpri |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00340-011-4514-3 doi (DE-627)OLC2074303238 (DE-He213)s00340-011-4514-3-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Andersson, S. B. verfasserin aut A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 104(2011), 1 vom: 10. Mai, Seite 161-173 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:104 year:2011 number:1 day:10 month:05 pages:161-173 https://doi.org/10.1007/s00340-011-4514-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 104 2011 1 10 05 161-173 |
spelling |
10.1007/s00340-011-4514-3 doi (DE-627)OLC2074303238 (DE-He213)s00340-011-4514-3-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Andersson, S. B. verfasserin aut A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 104(2011), 1 vom: 10. Mai, Seite 161-173 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:104 year:2011 number:1 day:10 month:05 pages:161-173 https://doi.org/10.1007/s00340-011-4514-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 104 2011 1 10 05 161-173 |
allfields_unstemmed |
10.1007/s00340-011-4514-3 doi (DE-627)OLC2074303238 (DE-He213)s00340-011-4514-3-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Andersson, S. B. verfasserin aut A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 104(2011), 1 vom: 10. Mai, Seite 161-173 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:104 year:2011 number:1 day:10 month:05 pages:161-173 https://doi.org/10.1007/s00340-011-4514-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 104 2011 1 10 05 161-173 |
allfieldsGer |
10.1007/s00340-011-4514-3 doi (DE-627)OLC2074303238 (DE-He213)s00340-011-4514-3-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Andersson, S. B. verfasserin aut A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 104(2011), 1 vom: 10. Mai, Seite 161-173 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:104 year:2011 number:1 day:10 month:05 pages:161-173 https://doi.org/10.1007/s00340-011-4514-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 104 2011 1 10 05 161-173 |
allfieldsSound |
10.1007/s00340-011-4514-3 doi (DE-627)OLC2074303238 (DE-He213)s00340-011-4514-3-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Andersson, S. B. verfasserin aut A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller Enthalten in Applied physics. B, Lasers and optics Springer-Verlag, 1981 104(2011), 1 vom: 10. Mai, Seite 161-173 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:104 year:2011 number:1 day:10 month:05 pages:161-173 https://doi.org/10.1007/s00340-011-4514-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 104 2011 1 10 05 161-173 |
language |
English |
source |
Enthalten in Applied physics. B, Lasers and optics 104(2011), 1 vom: 10. Mai, Seite 161-173 volume:104 year:2011 number:1 day:10 month:05 pages:161-173 |
sourceStr |
Enthalten in Applied physics. B, Lasers and optics 104(2011), 1 vom: 10. Mai, Seite 161-173 volume:104 year:2011 number:1 day:10 month:05 pages:161-173 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. B, Lasers and optics |
authorswithroles_txt_mv |
Andersson, S. B. @@aut@@ |
publishDateDaySort_date |
2011-05-10T00:00:00Z |
hierarchy_top_id |
130297682 |
dewey-sort |
3530 |
id |
OLC2074303238 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074303238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331133321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00340-011-4514-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074303238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00340-011-4514-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andersson, S. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focal Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Spread Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controller Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focal Volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracking Controller</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. B, Lasers and optics</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">104(2011), 1 vom: 10. Mai, Seite 161-173</subfield><subfield code="w">(DE-627)130297682</subfield><subfield code="w">(DE-600)579693-3</subfield><subfield code="w">(DE-576)015877272</subfield><subfield code="x">0946-2171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:161-173</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00340-011-4514-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">05</subfield><subfield code="h">161-173</subfield></datafield></record></collection>
|
author |
Andersson, S. B. |
spellingShingle |
Andersson, S. B. ddc 530 rvk UA 9001 misc Focal Point misc Point Spread Function misc Controller Parameter misc Focal Volume misc Tracking Controller A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
authorStr |
Andersson, S. B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130297682 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-2171 |
topic_title |
530 620 VZ 530 VZ UA 9001 VZ rvk A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope Focal Point Point Spread Function Controller Parameter Focal Volume Tracking Controller |
topic |
ddc 530 rvk UA 9001 misc Focal Point misc Point Spread Function misc Controller Parameter misc Focal Volume misc Tracking Controller |
topic_unstemmed |
ddc 530 rvk UA 9001 misc Focal Point misc Point Spread Function misc Controller Parameter misc Focal Volume misc Tracking Controller |
topic_browse |
ddc 530 rvk UA 9001 misc Focal Point misc Point Spread Function misc Controller Parameter misc Focal Volume misc Tracking Controller |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. B, Lasers and optics |
hierarchy_parent_id |
130297682 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. B, Lasers and optics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 |
title |
A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
ctrlnum |
(DE-627)OLC2074303238 (DE-He213)s00340-011-4514-3-p |
title_full |
A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
author_sort |
Andersson, S. B. |
journal |
Applied physics. B, Lasers and optics |
journalStr |
Applied physics. B, Lasers and optics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
161 |
author_browse |
Andersson, S. B. |
container_volume |
104 |
class |
530 620 VZ 530 VZ UA 9001 VZ rvk |
format_se |
Aufsätze |
author-letter |
Andersson, S. B. |
doi_str_mv |
10.1007/s00340-011-4514-3 |
dewey-full |
530 620 |
title_sort |
a nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
title_auth |
A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
abstract |
Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). © Springer-Verlag 2011 |
abstractGer |
Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). © Springer-Verlag 2011 |
abstract_unstemmed |
Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec). © Springer-Verlag 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_285 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 |
container_issue |
1 |
title_short |
A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope |
url |
https://doi.org/10.1007/s00340-011-4514-3 |
remote_bool |
false |
ppnlink |
130297682 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00340-011-4514-3 |
up_date |
2024-07-03T21:46:10.752Z |
_version_ |
1803595987816546304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074303238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331133321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00340-011-4514-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074303238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00340-011-4514-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andersson, S. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 $ μm^{2} $/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 $ μm^{2} $/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 $ μm^{2} $/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 $ μm^{2} $/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focal Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Spread Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controller Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focal Volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracking Controller</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. B, Lasers and optics</subfield><subfield code="d">Springer-Verlag, 1981</subfield><subfield code="g">104(2011), 1 vom: 10. Mai, Seite 161-173</subfield><subfield code="w">(DE-627)130297682</subfield><subfield code="w">(DE-600)579693-3</subfield><subfield code="w">(DE-576)015877272</subfield><subfield code="x">0946-2171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:161-173</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00340-011-4514-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">05</subfield><subfield code="h">161-173</subfield></datafield></record></collection>
|
score |
7.4012938 |