Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer
Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method...
Ausführliche Beschreibung
Autor*in: |
Wang, Shouyu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. B, Lasers and optics - Springer Berlin Heidelberg, 1981, 116(2013), 1 vom: 22. Okt., Seite 235-239 |
---|---|
Übergeordnetes Werk: |
volume:116 ; year:2013 ; number:1 ; day:22 ; month:10 ; pages:235-239 |
Links: |
---|
DOI / URN: |
10.1007/s00340-013-5680-2 |
---|
Katalog-ID: |
OLC2074314264 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074314264 | ||
003 | DE-627 | ||
005 | 20230331133518.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00340-013-5680-2 |2 doi | |
035 | |a (DE-627)OLC2074314264 | ||
035 | |a (DE-He213)s00340-013-5680-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001 |q VZ |2 rvk | ||
100 | 1 | |a Wang, Shouyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2013 | ||
520 | |a Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. | ||
650 | 4 | |a Phase Distribution | |
650 | 4 | |a Quantitative Phase | |
650 | 4 | |a Principal Component Analysis Method | |
650 | 4 | |a Phase Retrieval | |
650 | 4 | |a Principal Component Analysis Algorithm | |
700 | 1 | |a Xue, Liang |4 aut | |
700 | 1 | |a Li, Hailong |4 aut | |
700 | 1 | |a Lai, Jiancheng |4 aut | |
700 | 1 | |a Song, Yang |4 aut | |
700 | 1 | |a Li, Zhenhua |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. B, Lasers and optics |d Springer Berlin Heidelberg, 1981 |g 116(2013), 1 vom: 22. Okt., Seite 235-239 |w (DE-627)130297682 |w (DE-600)579693-3 |w (DE-576)015877272 |x 0946-2171 |7 nnns |
773 | 1 | 8 | |g volume:116 |g year:2013 |g number:1 |g day:22 |g month:10 |g pages:235-239 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00340-013-5680-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a UA 9001 |
951 | |a AR | ||
952 | |d 116 |j 2013 |e 1 |b 22 |c 10 |h 235-239 |
author_variant |
s w sw l x lx h l hl j l jl y s ys z l zl |
---|---|
matchkey_str |
article:09462171:2013----::uniaiehsdtcinihxaddrniacmoetnlssehdnnef |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s00340-013-5680-2 doi (DE-627)OLC2074314264 (DE-He213)s00340-013-5680-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Wang, Shouyu verfasserin aut Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm Xue, Liang aut Li, Hailong aut Lai, Jiancheng aut Song, Yang aut Li, Zhenhua aut Enthalten in Applied physics. B, Lasers and optics Springer Berlin Heidelberg, 1981 116(2013), 1 vom: 22. Okt., Seite 235-239 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:116 year:2013 number:1 day:22 month:10 pages:235-239 https://doi.org/10.1007/s00340-013-5680-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 116 2013 1 22 10 235-239 |
spelling |
10.1007/s00340-013-5680-2 doi (DE-627)OLC2074314264 (DE-He213)s00340-013-5680-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Wang, Shouyu verfasserin aut Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm Xue, Liang aut Li, Hailong aut Lai, Jiancheng aut Song, Yang aut Li, Zhenhua aut Enthalten in Applied physics. B, Lasers and optics Springer Berlin Heidelberg, 1981 116(2013), 1 vom: 22. Okt., Seite 235-239 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:116 year:2013 number:1 day:22 month:10 pages:235-239 https://doi.org/10.1007/s00340-013-5680-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 116 2013 1 22 10 235-239 |
allfields_unstemmed |
10.1007/s00340-013-5680-2 doi (DE-627)OLC2074314264 (DE-He213)s00340-013-5680-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Wang, Shouyu verfasserin aut Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm Xue, Liang aut Li, Hailong aut Lai, Jiancheng aut Song, Yang aut Li, Zhenhua aut Enthalten in Applied physics. B, Lasers and optics Springer Berlin Heidelberg, 1981 116(2013), 1 vom: 22. Okt., Seite 235-239 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:116 year:2013 number:1 day:22 month:10 pages:235-239 https://doi.org/10.1007/s00340-013-5680-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 116 2013 1 22 10 235-239 |
allfieldsGer |
10.1007/s00340-013-5680-2 doi (DE-627)OLC2074314264 (DE-He213)s00340-013-5680-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Wang, Shouyu verfasserin aut Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm Xue, Liang aut Li, Hailong aut Lai, Jiancheng aut Song, Yang aut Li, Zhenhua aut Enthalten in Applied physics. B, Lasers and optics Springer Berlin Heidelberg, 1981 116(2013), 1 vom: 22. Okt., Seite 235-239 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:116 year:2013 number:1 day:22 month:10 pages:235-239 https://doi.org/10.1007/s00340-013-5680-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 116 2013 1 22 10 235-239 |
allfieldsSound |
10.1007/s00340-013-5680-2 doi (DE-627)OLC2074314264 (DE-He213)s00340-013-5680-2-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001 VZ rvk Wang, Shouyu verfasserin aut Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm Xue, Liang aut Li, Hailong aut Lai, Jiancheng aut Song, Yang aut Li, Zhenhua aut Enthalten in Applied physics. B, Lasers and optics Springer Berlin Heidelberg, 1981 116(2013), 1 vom: 22. Okt., Seite 235-239 (DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 0946-2171 nnns volume:116 year:2013 number:1 day:22 month:10 pages:235-239 https://doi.org/10.1007/s00340-013-5680-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 UA 9001 AR 116 2013 1 22 10 235-239 |
language |
English |
source |
Enthalten in Applied physics. B, Lasers and optics 116(2013), 1 vom: 22. Okt., Seite 235-239 volume:116 year:2013 number:1 day:22 month:10 pages:235-239 |
sourceStr |
Enthalten in Applied physics. B, Lasers and optics 116(2013), 1 vom: 22. Okt., Seite 235-239 volume:116 year:2013 number:1 day:22 month:10 pages:235-239 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. B, Lasers and optics |
authorswithroles_txt_mv |
Wang, Shouyu @@aut@@ Xue, Liang @@aut@@ Li, Hailong @@aut@@ Lai, Jiancheng @@aut@@ Song, Yang @@aut@@ Li, Zhenhua @@aut@@ |
publishDateDaySort_date |
2013-10-22T00:00:00Z |
hierarchy_top_id |
130297682 |
dewey-sort |
3530 |
id |
OLC2074314264 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074314264</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331133518.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00340-013-5680-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074314264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00340-013-5680-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shouyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Component Analysis Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Component Analysis Algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hailong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Jiancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhenhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. B, Lasers and optics</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">116(2013), 1 vom: 22. Okt., Seite 235-239</subfield><subfield code="w">(DE-627)130297682</subfield><subfield code="w">(DE-600)579693-3</subfield><subfield code="w">(DE-576)015877272</subfield><subfield code="x">0946-2171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:235-239</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00340-013-5680-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">235-239</subfield></datafield></record></collection>
|
author |
Wang, Shouyu |
spellingShingle |
Wang, Shouyu ddc 530 rvk UA 9001 misc Phase Distribution misc Quantitative Phase misc Principal Component Analysis Method misc Phase Retrieval misc Principal Component Analysis Algorithm Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
authorStr |
Wang, Shouyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130297682 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-2171 |
topic_title |
530 620 VZ 530 VZ UA 9001 VZ rvk Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer Phase Distribution Quantitative Phase Principal Component Analysis Method Phase Retrieval Principal Component Analysis Algorithm |
topic |
ddc 530 rvk UA 9001 misc Phase Distribution misc Quantitative Phase misc Principal Component Analysis Method misc Phase Retrieval misc Principal Component Analysis Algorithm |
topic_unstemmed |
ddc 530 rvk UA 9001 misc Phase Distribution misc Quantitative Phase misc Principal Component Analysis Method misc Phase Retrieval misc Principal Component Analysis Algorithm |
topic_browse |
ddc 530 rvk UA 9001 misc Phase Distribution misc Quantitative Phase misc Principal Component Analysis Method misc Phase Retrieval misc Principal Component Analysis Algorithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. B, Lasers and optics |
hierarchy_parent_id |
130297682 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. B, Lasers and optics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130297682 (DE-600)579693-3 (DE-576)015877272 |
title |
Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
ctrlnum |
(DE-627)OLC2074314264 (DE-He213)s00340-013-5680-2-p |
title_full |
Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
author_sort |
Wang, Shouyu |
journal |
Applied physics. B, Lasers and optics |
journalStr |
Applied physics. B, Lasers and optics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
235 |
author_browse |
Wang, Shouyu Xue, Liang Li, Hailong Lai, Jiancheng Song, Yang Li, Zhenhua |
container_volume |
116 |
class |
530 620 VZ 530 VZ UA 9001 VZ rvk |
format_se |
Aufsätze |
author-letter |
Wang, Shouyu |
doi_str_mv |
10.1007/s00340-013-5680-2 |
dewey-full |
530 620 |
title_sort |
quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
title_auth |
Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
abstract |
Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. © Springer-Verlag Berlin Heidelberg 2013 |
abstractGer |
Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. © Springer-Verlag Berlin Heidelberg 2013 |
abstract_unstemmed |
Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments. © Springer-Verlag Berlin Heidelberg 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_30 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_170 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4313 GBV_ILN_4323 |
container_issue |
1 |
title_short |
Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer |
url |
https://doi.org/10.1007/s00340-013-5680-2 |
remote_bool |
false |
author2 |
Xue, Liang Li, Hailong Lai, Jiancheng Song, Yang Li, Zhenhua |
author2Str |
Xue, Liang Li, Hailong Lai, Jiancheng Song, Yang Li, Zhenhua |
ppnlink |
130297682 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00340-013-5680-2 |
up_date |
2024-07-03T21:49:18.610Z |
_version_ |
1803596184799936512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074314264</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331133518.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00340-013-5680-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074314264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00340-013-5680-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shouyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Component Analysis Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Component Analysis Algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hailong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Jiancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhenhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. B, Lasers and optics</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">116(2013), 1 vom: 22. Okt., Seite 235-239</subfield><subfield code="w">(DE-627)130297682</subfield><subfield code="w">(DE-600)579693-3</subfield><subfield code="w">(DE-576)015877272</subfield><subfield code="x">0946-2171</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:235-239</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00340-013-5680-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">235-239</subfield></datafield></record></collection>
|
score |
7.4026785 |