The unsteadiness of shock waves propagating through gas-particle mixtures
Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jum...
Ausführliche Beschreibung
Autor*in: |
Sommerfeld, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1985 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1985 |
---|
Übergeordnetes Werk: |
Enthalten in: Experiments in fluids - Springer-Verlag, 1983, 3(1985), 4 vom: Juli, Seite 197-206 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:1985 ; number:4 ; month:07 ; pages:197-206 |
Links: |
---|
DOI / URN: |
10.1007/BF00265101 |
---|
Katalog-ID: |
OLC2074321147 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074321147 | ||
003 | DE-627 | ||
005 | 20230331135419.0 | ||
007 | tu | ||
008 | 200819s1985 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00265101 |2 doi | |
035 | |a (DE-627)OLC2074321147 | ||
035 | |a (DE-He213)BF00265101-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 530 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Sommerfeld, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The unsteadiness of shock waves propagating through gas-particle mixtures |
264 | 1 | |c 1985 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1985 | ||
520 | |a Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. | ||
650 | 4 | |a Shock Wave | |
650 | 4 | |a Heat Capacity | |
650 | 4 | |a Wave Incident | |
650 | 4 | |a Shock Tube | |
650 | 4 | |a Shock Wave Incident | |
773 | 0 | 8 | |i Enthalten in |t Experiments in fluids |d Springer-Verlag, 1983 |g 3(1985), 4 vom: Juli, Seite 197-206 |w (DE-627)130443794 |w (DE-600)710083-8 |w (DE-576)015977404 |x 0723-4864 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:1985 |g number:4 |g month:07 |g pages:197-206 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00265101 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 1985 |e 4 |c 07 |h 197-206 |
author_variant |
m s ms |
---|---|
matchkey_str |
article:07234864:1985----::husednsosokaepoaaighoggs |
hierarchy_sort_str |
1985 |
publishDate |
1985 |
allfields |
10.1007/BF00265101 doi (DE-627)OLC2074321147 (DE-He213)BF00265101-p DE-627 ger DE-627 rakwb eng 620 530 VZ 530 VZ Sommerfeld, M. verfasserin aut The unsteadiness of shock waves propagating through gas-particle mixtures 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1985 Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident Enthalten in Experiments in fluids Springer-Verlag, 1983 3(1985), 4 vom: Juli, Seite 197-206 (DE-627)130443794 (DE-600)710083-8 (DE-576)015977404 0723-4864 nnns volume:3 year:1985 number:4 month:07 pages:197-206 https://doi.org/10.1007/BF00265101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 3 1985 4 07 197-206 |
spelling |
10.1007/BF00265101 doi (DE-627)OLC2074321147 (DE-He213)BF00265101-p DE-627 ger DE-627 rakwb eng 620 530 VZ 530 VZ Sommerfeld, M. verfasserin aut The unsteadiness of shock waves propagating through gas-particle mixtures 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1985 Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident Enthalten in Experiments in fluids Springer-Verlag, 1983 3(1985), 4 vom: Juli, Seite 197-206 (DE-627)130443794 (DE-600)710083-8 (DE-576)015977404 0723-4864 nnns volume:3 year:1985 number:4 month:07 pages:197-206 https://doi.org/10.1007/BF00265101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 3 1985 4 07 197-206 |
allfields_unstemmed |
10.1007/BF00265101 doi (DE-627)OLC2074321147 (DE-He213)BF00265101-p DE-627 ger DE-627 rakwb eng 620 530 VZ 530 VZ Sommerfeld, M. verfasserin aut The unsteadiness of shock waves propagating through gas-particle mixtures 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1985 Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident Enthalten in Experiments in fluids Springer-Verlag, 1983 3(1985), 4 vom: Juli, Seite 197-206 (DE-627)130443794 (DE-600)710083-8 (DE-576)015977404 0723-4864 nnns volume:3 year:1985 number:4 month:07 pages:197-206 https://doi.org/10.1007/BF00265101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 3 1985 4 07 197-206 |
allfieldsGer |
10.1007/BF00265101 doi (DE-627)OLC2074321147 (DE-He213)BF00265101-p DE-627 ger DE-627 rakwb eng 620 530 VZ 530 VZ Sommerfeld, M. verfasserin aut The unsteadiness of shock waves propagating through gas-particle mixtures 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1985 Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident Enthalten in Experiments in fluids Springer-Verlag, 1983 3(1985), 4 vom: Juli, Seite 197-206 (DE-627)130443794 (DE-600)710083-8 (DE-576)015977404 0723-4864 nnns volume:3 year:1985 number:4 month:07 pages:197-206 https://doi.org/10.1007/BF00265101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 3 1985 4 07 197-206 |
allfieldsSound |
10.1007/BF00265101 doi (DE-627)OLC2074321147 (DE-He213)BF00265101-p DE-627 ger DE-627 rakwb eng 620 530 VZ 530 VZ Sommerfeld, M. verfasserin aut The unsteadiness of shock waves propagating through gas-particle mixtures 1985 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1985 Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident Enthalten in Experiments in fluids Springer-Verlag, 1983 3(1985), 4 vom: Juli, Seite 197-206 (DE-627)130443794 (DE-600)710083-8 (DE-576)015977404 0723-4864 nnns volume:3 year:1985 number:4 month:07 pages:197-206 https://doi.org/10.1007/BF00265101 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 AR 3 1985 4 07 197-206 |
language |
English |
source |
Enthalten in Experiments in fluids 3(1985), 4 vom: Juli, Seite 197-206 volume:3 year:1985 number:4 month:07 pages:197-206 |
sourceStr |
Enthalten in Experiments in fluids 3(1985), 4 vom: Juli, Seite 197-206 volume:3 year:1985 number:4 month:07 pages:197-206 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Experiments in fluids |
authorswithroles_txt_mv |
Sommerfeld, M. @@aut@@ |
publishDateDaySort_date |
1985-07-01T00:00:00Z |
hierarchy_top_id |
130443794 |
dewey-sort |
3620 |
id |
OLC2074321147 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074321147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331135419.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1985 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00265101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074321147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00265101-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sommerfeld, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The unsteadiness of shock waves propagating through gas-particle mixtures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1985</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1985</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock Wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Incident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock Tube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock Wave Incident</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experiments in fluids</subfield><subfield code="d">Springer-Verlag, 1983</subfield><subfield code="g">3(1985), 4 vom: Juli, Seite 197-206</subfield><subfield code="w">(DE-627)130443794</subfield><subfield code="w">(DE-600)710083-8</subfield><subfield code="w">(DE-576)015977404</subfield><subfield code="x">0723-4864</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:1985</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:197-206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00265101</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">1985</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">197-206</subfield></datafield></record></collection>
|
author |
Sommerfeld, M. |
spellingShingle |
Sommerfeld, M. ddc 620 ddc 530 misc Shock Wave misc Heat Capacity misc Wave Incident misc Shock Tube misc Shock Wave Incident The unsteadiness of shock waves propagating through gas-particle mixtures |
authorStr |
Sommerfeld, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130443794 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0723-4864 |
topic_title |
620 530 VZ 530 VZ The unsteadiness of shock waves propagating through gas-particle mixtures Shock Wave Heat Capacity Wave Incident Shock Tube Shock Wave Incident |
topic |
ddc 620 ddc 530 misc Shock Wave misc Heat Capacity misc Wave Incident misc Shock Tube misc Shock Wave Incident |
topic_unstemmed |
ddc 620 ddc 530 misc Shock Wave misc Heat Capacity misc Wave Incident misc Shock Tube misc Shock Wave Incident |
topic_browse |
ddc 620 ddc 530 misc Shock Wave misc Heat Capacity misc Wave Incident misc Shock Tube misc Shock Wave Incident |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Experiments in fluids |
hierarchy_parent_id |
130443794 |
dewey-tens |
620 - Engineering 530 - Physics |
hierarchy_top_title |
Experiments in fluids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130443794 (DE-600)710083-8 (DE-576)015977404 |
title |
The unsteadiness of shock waves propagating through gas-particle mixtures |
ctrlnum |
(DE-627)OLC2074321147 (DE-He213)BF00265101-p |
title_full |
The unsteadiness of shock waves propagating through gas-particle mixtures |
author_sort |
Sommerfeld, M. |
journal |
Experiments in fluids |
journalStr |
Experiments in fluids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
1985 |
contenttype_str_mv |
txt |
container_start_page |
197 |
author_browse |
Sommerfeld, M. |
container_volume |
3 |
class |
620 530 VZ 530 VZ |
format_se |
Aufsätze |
author-letter |
Sommerfeld, M. |
doi_str_mv |
10.1007/BF00265101 |
dewey-full |
620 530 |
title_sort |
the unsteadiness of shock waves propagating through gas-particle mixtures |
title_auth |
The unsteadiness of shock waves propagating through gas-particle mixtures |
abstract |
Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. © Springer-Verlag 1985 |
abstractGer |
Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. © Springer-Verlag 1985 |
abstract_unstemmed |
Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method. © Springer-Verlag 1985 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4700 |
container_issue |
4 |
title_short |
The unsteadiness of shock waves propagating through gas-particle mixtures |
url |
https://doi.org/10.1007/BF00265101 |
remote_bool |
false |
ppnlink |
130443794 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00265101 |
up_date |
2024-07-03T21:51:10.921Z |
_version_ |
1803596302566555648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074321147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331135419.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1985 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00265101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074321147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00265101-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sommerfeld, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The unsteadiness of shock waves propagating through gas-particle mixtures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1985</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1985</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A shock wave which is incident onto a gas-particle mixture or initiated within such a mixture needs a certain distance to reach a constant velocity. This effect is due to the inertia and the heat capacity of the particles. In general the shock wave is decelerated and the frozen pressure jump is decaying. A vertical shock tube was used in order to produce a plane shock wave incident onto a homogeneous gas-particle mixture. In addition to measurements of the shock velocity and the pressure history along the total low pressure section, the particle velocity was measured within the relaxation zone far downstream of the diaphragm using a laser-Doppler-velocimeter. Thus a drag law describing the particle acceleration within the relaxation zone was derived from the measurements. To compare the experiments with theoretical results, calculations were performed by the random-choice method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock Wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Incident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock Tube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock Wave Incident</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experiments in fluids</subfield><subfield code="d">Springer-Verlag, 1983</subfield><subfield code="g">3(1985), 4 vom: Juli, Seite 197-206</subfield><subfield code="w">(DE-627)130443794</subfield><subfield code="w">(DE-600)710083-8</subfield><subfield code="w">(DE-576)015977404</subfield><subfield code="x">0723-4864</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:1985</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:197-206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00265101</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">1985</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">197-206</subfield></datafield></record></collection>
|
score |
7.4005175 |