Involutive Residuated Lattices Based on Modular and Distributive Lattices
Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic con...
Ausführliche Beschreibung
Autor*in: |
Olson, Jeffrey S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Order - Springer Netherlands, 1984, 31(2013), 3 vom: 30. Okt., Seite 373-389 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2013 ; number:3 ; day:30 ; month:10 ; pages:373-389 |
Links: |
---|
DOI / URN: |
10.1007/s11083-013-9307-3 |
---|
Katalog-ID: |
OLC2074605145 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074605145 | ||
003 | DE-627 | ||
005 | 20230503234216.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11083-013-9307-3 |2 doi | |
035 | |a (DE-627)OLC2074605145 | ||
035 | |a (DE-He213)s11083-013-9307-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Olson, Jeffrey S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Involutive Residuated Lattices Based on Modular and Distributive Lattices |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2013 | ||
520 | |a Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. | ||
650 | 4 | |a Involutive residuated lattice | |
650 | 4 | |a Involution | |
650 | 4 | |a Modular lattice | |
773 | 0 | 8 | |i Enthalten in |t Order |d Springer Netherlands, 1984 |g 31(2013), 3 vom: 30. Okt., Seite 373-389 |w (DE-627)130333581 |w (DE-600)591930-7 |w (DE-576)015892093 |x 0167-8094 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2013 |g number:3 |g day:30 |g month:10 |g pages:373-389 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11083-013-9307-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4036 | ||
951 | |a AR | ||
952 | |d 31 |j 2013 |e 3 |b 30 |c 10 |h 373-389 |
author_variant |
j s o js jso |
---|---|
matchkey_str |
article:01678094:2013----::nouieeiutdatcsaeomdlrnds |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11083-013-9307-3 doi (DE-627)OLC2074605145 (DE-He213)s11083-013-9307-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Olson, Jeffrey S. verfasserin aut Involutive Residuated Lattices Based on Modular and Distributive Lattices 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. Involutive residuated lattice Involution Modular lattice Enthalten in Order Springer Netherlands, 1984 31(2013), 3 vom: 30. Okt., Seite 373-389 (DE-627)130333581 (DE-600)591930-7 (DE-576)015892093 0167-8094 nnns volume:31 year:2013 number:3 day:30 month:10 pages:373-389 https://doi.org/10.1007/s11083-013-9307-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4036 AR 31 2013 3 30 10 373-389 |
spelling |
10.1007/s11083-013-9307-3 doi (DE-627)OLC2074605145 (DE-He213)s11083-013-9307-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Olson, Jeffrey S. verfasserin aut Involutive Residuated Lattices Based on Modular and Distributive Lattices 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. Involutive residuated lattice Involution Modular lattice Enthalten in Order Springer Netherlands, 1984 31(2013), 3 vom: 30. Okt., Seite 373-389 (DE-627)130333581 (DE-600)591930-7 (DE-576)015892093 0167-8094 nnns volume:31 year:2013 number:3 day:30 month:10 pages:373-389 https://doi.org/10.1007/s11083-013-9307-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4036 AR 31 2013 3 30 10 373-389 |
allfields_unstemmed |
10.1007/s11083-013-9307-3 doi (DE-627)OLC2074605145 (DE-He213)s11083-013-9307-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Olson, Jeffrey S. verfasserin aut Involutive Residuated Lattices Based on Modular and Distributive Lattices 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. Involutive residuated lattice Involution Modular lattice Enthalten in Order Springer Netherlands, 1984 31(2013), 3 vom: 30. Okt., Seite 373-389 (DE-627)130333581 (DE-600)591930-7 (DE-576)015892093 0167-8094 nnns volume:31 year:2013 number:3 day:30 month:10 pages:373-389 https://doi.org/10.1007/s11083-013-9307-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4036 AR 31 2013 3 30 10 373-389 |
allfieldsGer |
10.1007/s11083-013-9307-3 doi (DE-627)OLC2074605145 (DE-He213)s11083-013-9307-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Olson, Jeffrey S. verfasserin aut Involutive Residuated Lattices Based on Modular and Distributive Lattices 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. Involutive residuated lattice Involution Modular lattice Enthalten in Order Springer Netherlands, 1984 31(2013), 3 vom: 30. Okt., Seite 373-389 (DE-627)130333581 (DE-600)591930-7 (DE-576)015892093 0167-8094 nnns volume:31 year:2013 number:3 day:30 month:10 pages:373-389 https://doi.org/10.1007/s11083-013-9307-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4036 AR 31 2013 3 30 10 373-389 |
allfieldsSound |
10.1007/s11083-013-9307-3 doi (DE-627)OLC2074605145 (DE-He213)s11083-013-9307-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Olson, Jeffrey S. verfasserin aut Involutive Residuated Lattices Based on Modular and Distributive Lattices 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. Involutive residuated lattice Involution Modular lattice Enthalten in Order Springer Netherlands, 1984 31(2013), 3 vom: 30. Okt., Seite 373-389 (DE-627)130333581 (DE-600)591930-7 (DE-576)015892093 0167-8094 nnns volume:31 year:2013 number:3 day:30 month:10 pages:373-389 https://doi.org/10.1007/s11083-013-9307-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4036 AR 31 2013 3 30 10 373-389 |
language |
English |
source |
Enthalten in Order 31(2013), 3 vom: 30. Okt., Seite 373-389 volume:31 year:2013 number:3 day:30 month:10 pages:373-389 |
sourceStr |
Enthalten in Order 31(2013), 3 vom: 30. Okt., Seite 373-389 volume:31 year:2013 number:3 day:30 month:10 pages:373-389 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Involutive residuated lattice Involution Modular lattice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Order |
authorswithroles_txt_mv |
Olson, Jeffrey S. @@aut@@ |
publishDateDaySort_date |
2013-10-30T00:00:00Z |
hierarchy_top_id |
130333581 |
dewey-sort |
3510 |
id |
OLC2074605145 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074605145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503234216.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11083-013-9307-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074605145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11083-013-9307-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olson, Jeffrey S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Involutive Residuated Lattices Based on Modular and Distributive Lattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involutive residuated lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular lattice</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Order</subfield><subfield code="d">Springer Netherlands, 1984</subfield><subfield code="g">31(2013), 3 vom: 30. Okt., Seite 373-389</subfield><subfield code="w">(DE-627)130333581</subfield><subfield code="w">(DE-600)591930-7</subfield><subfield code="w">(DE-576)015892093</subfield><subfield code="x">0167-8094</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:373-389</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11083-013-9307-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">373-389</subfield></datafield></record></collection>
|
author |
Olson, Jeffrey S. |
spellingShingle |
Olson, Jeffrey S. ddc 510 ssgn 17,1 misc Involutive residuated lattice misc Involution misc Modular lattice Involutive Residuated Lattices Based on Modular and Distributive Lattices |
authorStr |
Olson, Jeffrey S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130333581 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0167-8094 |
topic_title |
510 VZ 17,1 ssgn Involutive Residuated Lattices Based on Modular and Distributive Lattices Involutive residuated lattice Involution Modular lattice |
topic |
ddc 510 ssgn 17,1 misc Involutive residuated lattice misc Involution misc Modular lattice |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Involutive residuated lattice misc Involution misc Modular lattice |
topic_browse |
ddc 510 ssgn 17,1 misc Involutive residuated lattice misc Involution misc Modular lattice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Order |
hierarchy_parent_id |
130333581 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Order |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130333581 (DE-600)591930-7 (DE-576)015892093 |
title |
Involutive Residuated Lattices Based on Modular and Distributive Lattices |
ctrlnum |
(DE-627)OLC2074605145 (DE-He213)s11083-013-9307-3-p |
title_full |
Involutive Residuated Lattices Based on Modular and Distributive Lattices |
author_sort |
Olson, Jeffrey S. |
journal |
Order |
journalStr |
Order |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
373 |
author_browse |
Olson, Jeffrey S. |
container_volume |
31 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Olson, Jeffrey S. |
doi_str_mv |
10.1007/s11083-013-9307-3 |
dewey-full |
510 |
title_sort |
involutive residuated lattices based on modular and distributive lattices |
title_auth |
Involutive Residuated Lattices Based on Modular and Distributive Lattices |
abstract |
Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. © Springer Science+Business Media Dordrecht 2013 |
abstractGer |
Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. © Springer Science+Business Media Dordrecht 2013 |
abstract_unstemmed |
Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided. © Springer Science+Business Media Dordrecht 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4036 |
container_issue |
3 |
title_short |
Involutive Residuated Lattices Based on Modular and Distributive Lattices |
url |
https://doi.org/10.1007/s11083-013-9307-3 |
remote_bool |
false |
ppnlink |
130333581 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11083-013-9307-3 |
up_date |
2024-07-03T22:49:20.468Z |
_version_ |
1803599961620742144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074605145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503234216.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11083-013-9307-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074605145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11083-013-9307-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olson, Jeffrey S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Involutive Residuated Lattices Based on Modular and Distributive Lattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An involutive residuated lattice (IRL) is a lattice-ordered monoid possessing residual operations and a dualizing element. We show that a large class of self-dual lattices may be endowed with an IRL structure, and give examples of lattices which fail to admit IRLs with natural algebraic conditions. A classification of all IRLs based on the modular lattices Mn is provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involutive residuated lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular lattice</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Order</subfield><subfield code="d">Springer Netherlands, 1984</subfield><subfield code="g">31(2013), 3 vom: 30. Okt., Seite 373-389</subfield><subfield code="w">(DE-627)130333581</subfield><subfield code="w">(DE-600)591930-7</subfield><subfield code="w">(DE-576)015892093</subfield><subfield code="x">0167-8094</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:373-389</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11083-013-9307-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">373-389</subfield></datafield></record></collection>
|
score |
7.401023 |