Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method
Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC)...
Ausführliche Beschreibung
Autor*in: |
Wang, ZhenZhou [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Machine vision and applications - Springer-Verlag, 1988, 23(2012), 6 vom: 26. Juli, Seite 1209-1218 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2012 ; number:6 ; day:26 ; month:07 ; pages:1209-1218 |
Links: |
---|
DOI / URN: |
10.1007/s00138-012-0441-5 |
---|
Katalog-ID: |
OLC2074626606 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2074626606 | ||
003 | DE-627 | ||
005 | 20230401063210.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00138-012-0441-5 |2 doi | |
035 | |a (DE-627)OLC2074626606 | ||
035 | |a (DE-He213)s00138-012-0441-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Wang, ZhenZhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2012 | ||
520 | |a Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. | ||
650 | 4 | |a MAP | |
650 | 4 | |a EM | |
650 | 4 | |a MCMC | |
650 | 4 | |a Fuzzy images | |
650 | 4 | |a Graph cut | |
650 | 4 | |a Normalized graph cut | |
650 | 4 | |a Welding | |
700 | 1 | |a Zhang, YuMing |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Machine vision and applications |d Springer-Verlag, 1988 |g 23(2012), 6 vom: 26. Juli, Seite 1209-1218 |w (DE-627)129248843 |w (DE-600)59385-0 |w (DE-576)017944139 |x 0932-8092 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2012 |g number:6 |g day:26 |g month:07 |g pages:1209-1218 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00138-012-0441-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4313 | ||
951 | |a AR | ||
952 | |d 23 |j 2012 |e 6 |b 26 |c 07 |h 1209-1218 |
author_variant |
z w zw y z yz |
---|---|
matchkey_str |
article:09328092:2012----::emnainfuziaeaoeadatwse |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00138-012-0441-5 doi (DE-627)OLC2074626606 (DE-He213)s00138-012-0441-5-p DE-627 ger DE-627 rakwb eng 004 VZ 11 ssgn Wang, ZhenZhou verfasserin aut Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding Zhang, YuMing aut Enthalten in Machine vision and applications Springer-Verlag, 1988 23(2012), 6 vom: 26. Juli, Seite 1209-1218 (DE-627)129248843 (DE-600)59385-0 (DE-576)017944139 0932-8092 nnns volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 https://doi.org/10.1007/s00138-012-0441-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_32 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4313 AR 23 2012 6 26 07 1209-1218 |
spelling |
10.1007/s00138-012-0441-5 doi (DE-627)OLC2074626606 (DE-He213)s00138-012-0441-5-p DE-627 ger DE-627 rakwb eng 004 VZ 11 ssgn Wang, ZhenZhou verfasserin aut Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding Zhang, YuMing aut Enthalten in Machine vision and applications Springer-Verlag, 1988 23(2012), 6 vom: 26. Juli, Seite 1209-1218 (DE-627)129248843 (DE-600)59385-0 (DE-576)017944139 0932-8092 nnns volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 https://doi.org/10.1007/s00138-012-0441-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_32 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4313 AR 23 2012 6 26 07 1209-1218 |
allfields_unstemmed |
10.1007/s00138-012-0441-5 doi (DE-627)OLC2074626606 (DE-He213)s00138-012-0441-5-p DE-627 ger DE-627 rakwb eng 004 VZ 11 ssgn Wang, ZhenZhou verfasserin aut Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding Zhang, YuMing aut Enthalten in Machine vision and applications Springer-Verlag, 1988 23(2012), 6 vom: 26. Juli, Seite 1209-1218 (DE-627)129248843 (DE-600)59385-0 (DE-576)017944139 0932-8092 nnns volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 https://doi.org/10.1007/s00138-012-0441-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_32 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4313 AR 23 2012 6 26 07 1209-1218 |
allfieldsGer |
10.1007/s00138-012-0441-5 doi (DE-627)OLC2074626606 (DE-He213)s00138-012-0441-5-p DE-627 ger DE-627 rakwb eng 004 VZ 11 ssgn Wang, ZhenZhou verfasserin aut Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding Zhang, YuMing aut Enthalten in Machine vision and applications Springer-Verlag, 1988 23(2012), 6 vom: 26. Juli, Seite 1209-1218 (DE-627)129248843 (DE-600)59385-0 (DE-576)017944139 0932-8092 nnns volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 https://doi.org/10.1007/s00138-012-0441-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_32 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4313 AR 23 2012 6 26 07 1209-1218 |
allfieldsSound |
10.1007/s00138-012-0441-5 doi (DE-627)OLC2074626606 (DE-He213)s00138-012-0441-5-p DE-627 ger DE-627 rakwb eng 004 VZ 11 ssgn Wang, ZhenZhou verfasserin aut Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding Zhang, YuMing aut Enthalten in Machine vision and applications Springer-Verlag, 1988 23(2012), 6 vom: 26. Juli, Seite 1209-1218 (DE-627)129248843 (DE-600)59385-0 (DE-576)017944139 0932-8092 nnns volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 https://doi.org/10.1007/s00138-012-0441-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_32 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4313 AR 23 2012 6 26 07 1209-1218 |
language |
English |
source |
Enthalten in Machine vision and applications 23(2012), 6 vom: 26. Juli, Seite 1209-1218 volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 |
sourceStr |
Enthalten in Machine vision and applications 23(2012), 6 vom: 26. Juli, Seite 1209-1218 volume:23 year:2012 number:6 day:26 month:07 pages:1209-1218 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Machine vision and applications |
authorswithroles_txt_mv |
Wang, ZhenZhou @@aut@@ Zhang, YuMing @@aut@@ |
publishDateDaySort_date |
2012-07-26T00:00:00Z |
hierarchy_top_id |
129248843 |
dewey-sort |
14 |
id |
OLC2074626606 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074626606</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401063210.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00138-012-0441-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074626606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00138-012-0441-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, ZhenZhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MAP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCMC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph cut</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normalized graph cut</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Welding</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, YuMing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Machine vision and applications</subfield><subfield code="d">Springer-Verlag, 1988</subfield><subfield code="g">23(2012), 6 vom: 26. Juli, Seite 1209-1218</subfield><subfield code="w">(DE-627)129248843</subfield><subfield code="w">(DE-600)59385-0</subfield><subfield code="w">(DE-576)017944139</subfield><subfield code="x">0932-8092</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">day:26</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1209-1218</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00138-012-0441-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="b">26</subfield><subfield code="c">07</subfield><subfield code="h">1209-1218</subfield></datafield></record></collection>
|
author |
Wang, ZhenZhou |
spellingShingle |
Wang, ZhenZhou ddc 004 ssgn 11 misc MAP misc EM misc MCMC misc Fuzzy images misc Graph cut misc Normalized graph cut misc Welding Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method |
authorStr |
Wang, ZhenZhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129248843 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0932-8092 |
topic_title |
004 VZ 11 ssgn Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method MAP EM MCMC Fuzzy images Graph cut Normalized graph cut Welding |
topic |
ddc 004 ssgn 11 misc MAP misc EM misc MCMC misc Fuzzy images misc Graph cut misc Normalized graph cut misc Welding |
topic_unstemmed |
ddc 004 ssgn 11 misc MAP misc EM misc MCMC misc Fuzzy images misc Graph cut misc Normalized graph cut misc Welding |
topic_browse |
ddc 004 ssgn 11 misc MAP misc EM misc MCMC misc Fuzzy images misc Graph cut misc Normalized graph cut misc Welding |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Machine vision and applications |
hierarchy_parent_id |
129248843 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Machine vision and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129248843 (DE-600)59385-0 (DE-576)017944139 |
title |
Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method |
ctrlnum |
(DE-627)OLC2074626606 (DE-He213)s00138-012-0441-5-p |
title_full |
Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method |
author_sort |
Wang, ZhenZhou |
journal |
Machine vision and applications |
journalStr |
Machine vision and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1209 |
author_browse |
Wang, ZhenZhou Zhang, YuMing |
container_volume |
23 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Wang, ZhenZhou |
doi_str_mv |
10.1007/s00138-012-0441-5 |
dewey-full |
004 |
title_sort |
segmentation of fuzzy images: a novel and fast two-step pseudo map method |
title_auth |
Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method |
abstract |
Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. © Springer-Verlag 2012 |
abstractGer |
Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. © Springer-Verlag 2012 |
abstract_unstemmed |
Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process. © Springer-Verlag 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_32 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4313 |
container_issue |
6 |
title_short |
Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method |
url |
https://doi.org/10.1007/s00138-012-0441-5 |
remote_bool |
false |
author2 |
Zhang, YuMing |
author2Str |
Zhang, YuMing |
ppnlink |
129248843 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00138-012-0441-5 |
up_date |
2024-07-03T22:53:25.045Z |
_version_ |
1803600218077265920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2074626606</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401063210.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00138-012-0441-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2074626606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00138-012-0441-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, ZhenZhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Segmentation of fuzzy images: a novel and fast two-step pseudo MAP method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a new two-step pseudo maximum a posteriori (MAP) segmentation method for the Markov random field (MRF)-modeled image because the exact MAP estimation is hard to implement due to intractable complexity. The expectation maximization (EM) and Markov Chain Monte Carlo (MCMC) methods are adopted to estimate the parameters for the MRF model due to their comparatively good performance. Although the image segmentation algorithms via graph cuts have become very popular nowadays, our proposed algorithm still performs significantly better in automatic identification and segmentation of fuzzy images than them, which is shown by the quantitative results on synthesized images. In practical applications, the proposed two-step pseudo MAP method is superior in segmenting the fuzzy laser images reflected from the weld pool surfaces during the P-GMAW welding process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MAP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCMC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph cut</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normalized graph cut</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Welding</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, YuMing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Machine vision and applications</subfield><subfield code="d">Springer-Verlag, 1988</subfield><subfield code="g">23(2012), 6 vom: 26. Juli, Seite 1209-1218</subfield><subfield code="w">(DE-627)129248843</subfield><subfield code="w">(DE-600)59385-0</subfield><subfield code="w">(DE-576)017944139</subfield><subfield code="x">0932-8092</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">day:26</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1209-1218</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00138-012-0441-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="b">26</subfield><subfield code="c">07</subfield><subfield code="h">1209-1218</subfield></datafield></record></collection>
|
score |
7.4021063 |