A bounded-error quantum polynomial-time algorithm for two graph bisection problems
Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisec...
Ausführliche Beschreibung
Autor*in: |
Younes, Ahmed [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Quantum information processing - Springer US, 2002, 14(2015), 9 vom: 14. Juli, Seite 3161-3177 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2015 ; number:9 ; day:14 ; month:07 ; pages:3161-3177 |
Links: |
---|
DOI / URN: |
10.1007/s11128-015-1069-y |
---|
Katalog-ID: |
OLC207514754X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207514754X | ||
003 | DE-627 | ||
005 | 20230504015128.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11128-015-1069-y |2 doi | |
035 | |a (DE-627)OLC207514754X | ||
035 | |a (DE-He213)s11128-015-1069-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 33.23$jQuantenphysik |2 bkl | ||
084 | |a 54.10$jTheoretische Informatik |2 bkl | ||
100 | 1 | |a Younes, Ahmed |e verfasserin |4 aut | |
245 | 1 | 0 | |a A bounded-error quantum polynomial-time algorithm for two graph bisection problems |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. | ||
650 | 4 | |a Quantum algorithm | |
650 | 4 | |a Graph bisection | |
650 | 4 | |a Max-bisection | |
650 | 4 | |a Min-bisection | |
650 | 4 | |a Amplitude amplification | |
650 | 4 | |a BQP | |
650 | 4 | |a NP-hard | |
773 | 0 | 8 | |i Enthalten in |t Quantum information processing |d Springer US, 2002 |g 14(2015), 9 vom: 14. Juli, Seite 3161-3177 |w (DE-627)489255752 |w (DE-600)2191523-4 |w (DE-576)9489255750 |x 1570-0755 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2015 |g number:9 |g day:14 |g month:07 |g pages:3161-3177 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11128-015-1069-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.23$jQuantenphysik |q VZ |0 106407910 |0 (DE-625)106407910 |
936 | b | k | |a 54.10$jTheoretische Informatik |q VZ |0 106418815 |0 (DE-625)106418815 |
951 | |a AR | ||
952 | |d 14 |j 2015 |e 9 |b 14 |c 07 |h 3161-3177 |
author_variant |
a y ay |
---|---|
matchkey_str |
article:15700755:2015----::buddroqatmoyoilieloihfrwg |
hierarchy_sort_str |
2015 |
bklnumber |
33.23$jQuantenphysik 54.10$jTheoretische Informatik |
publishDate |
2015 |
allfields |
10.1007/s11128-015-1069-y doi (DE-627)OLC207514754X (DE-He213)s11128-015-1069-y-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Younes, Ahmed verfasserin aut A bounded-error quantum polynomial-time algorithm for two graph bisection problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard Enthalten in Quantum information processing Springer US, 2002 14(2015), 9 vom: 14. Juli, Seite 3161-3177 (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 https://doi.org/10.1007/s11128-015-1069-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 14 2015 9 14 07 3161-3177 |
spelling |
10.1007/s11128-015-1069-y doi (DE-627)OLC207514754X (DE-He213)s11128-015-1069-y-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Younes, Ahmed verfasserin aut A bounded-error quantum polynomial-time algorithm for two graph bisection problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard Enthalten in Quantum information processing Springer US, 2002 14(2015), 9 vom: 14. Juli, Seite 3161-3177 (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 https://doi.org/10.1007/s11128-015-1069-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 14 2015 9 14 07 3161-3177 |
allfields_unstemmed |
10.1007/s11128-015-1069-y doi (DE-627)OLC207514754X (DE-He213)s11128-015-1069-y-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Younes, Ahmed verfasserin aut A bounded-error quantum polynomial-time algorithm for two graph bisection problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard Enthalten in Quantum information processing Springer US, 2002 14(2015), 9 vom: 14. Juli, Seite 3161-3177 (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 https://doi.org/10.1007/s11128-015-1069-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 14 2015 9 14 07 3161-3177 |
allfieldsGer |
10.1007/s11128-015-1069-y doi (DE-627)OLC207514754X (DE-He213)s11128-015-1069-y-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Younes, Ahmed verfasserin aut A bounded-error quantum polynomial-time algorithm for two graph bisection problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard Enthalten in Quantum information processing Springer US, 2002 14(2015), 9 vom: 14. Juli, Seite 3161-3177 (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 https://doi.org/10.1007/s11128-015-1069-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 14 2015 9 14 07 3161-3177 |
allfieldsSound |
10.1007/s11128-015-1069-y doi (DE-627)OLC207514754X (DE-He213)s11128-015-1069-y-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Younes, Ahmed verfasserin aut A bounded-error quantum polynomial-time algorithm for two graph bisection problems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard Enthalten in Quantum information processing Springer US, 2002 14(2015), 9 vom: 14. Juli, Seite 3161-3177 (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 https://doi.org/10.1007/s11128-015-1069-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 14 2015 9 14 07 3161-3177 |
language |
English |
source |
Enthalten in Quantum information processing 14(2015), 9 vom: 14. Juli, Seite 3161-3177 volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 |
sourceStr |
Enthalten in Quantum information processing 14(2015), 9 vom: 14. Juli, Seite 3161-3177 volume:14 year:2015 number:9 day:14 month:07 pages:3161-3177 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Quantum information processing |
authorswithroles_txt_mv |
Younes, Ahmed @@aut@@ |
publishDateDaySort_date |
2015-07-14T00:00:00Z |
hierarchy_top_id |
489255752 |
dewey-sort |
14 |
id |
OLC207514754X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207514754X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504015128.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11128-015-1069-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207514754X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11128-015-1069-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Younes, Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A bounded-error quantum polynomial-time algorithm for two graph bisection problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph bisection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Max-bisection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Min-bisection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amplitude amplification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BQP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NP-hard</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quantum information processing</subfield><subfield code="d">Springer US, 2002</subfield><subfield code="g">14(2015), 9 vom: 14. Juli, Seite 3161-3177</subfield><subfield code="w">(DE-627)489255752</subfield><subfield code="w">(DE-600)2191523-4</subfield><subfield code="w">(DE-576)9489255750</subfield><subfield code="x">1570-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">day:14</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:3161-3177</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11128-015-1069-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="q">VZ</subfield><subfield code="0">106407910</subfield><subfield code="0">(DE-625)106407910</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418815</subfield><subfield code="0">(DE-625)106418815</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="b">14</subfield><subfield code="c">07</subfield><subfield code="h">3161-3177</subfield></datafield></record></collection>
|
author |
Younes, Ahmed |
spellingShingle |
Younes, Ahmed ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum algorithm misc Graph bisection misc Max-bisection misc Min-bisection misc Amplitude amplification misc BQP misc NP-hard A bounded-error quantum polynomial-time algorithm for two graph bisection problems |
authorStr |
Younes, Ahmed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)489255752 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1570-0755 |
topic_title |
004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl A bounded-error quantum polynomial-time algorithm for two graph bisection problems Quantum algorithm Graph bisection Max-bisection Min-bisection Amplitude amplification BQP NP-hard |
topic |
ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum algorithm misc Graph bisection misc Max-bisection misc Min-bisection misc Amplitude amplification misc BQP misc NP-hard |
topic_unstemmed |
ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum algorithm misc Graph bisection misc Max-bisection misc Min-bisection misc Amplitude amplification misc BQP misc NP-hard |
topic_browse |
ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum algorithm misc Graph bisection misc Max-bisection misc Min-bisection misc Amplitude amplification misc BQP misc NP-hard |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Quantum information processing |
hierarchy_parent_id |
489255752 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Quantum information processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 |
title |
A bounded-error quantum polynomial-time algorithm for two graph bisection problems |
ctrlnum |
(DE-627)OLC207514754X (DE-He213)s11128-015-1069-y-p |
title_full |
A bounded-error quantum polynomial-time algorithm for two graph bisection problems |
author_sort |
Younes, Ahmed |
journal |
Quantum information processing |
journalStr |
Quantum information processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
3161 |
author_browse |
Younes, Ahmed |
container_volume |
14 |
class |
004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl |
format_se |
Aufsätze |
author-letter |
Younes, Ahmed |
doi_str_mv |
10.1007/s11128-015-1069-y |
normlink |
106407910 106418815 |
normlink_prefix_str_mv |
106407910 (DE-625)106407910 106418815 (DE-625)106418815 |
dewey-full |
004 |
title_sort |
a bounded-error quantum polynomial-time algorithm for two graph bisection problems |
title_auth |
A bounded-error quantum polynomial-time algorithm for two graph bisection problems |
abstract |
Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
9 |
title_short |
A bounded-error quantum polynomial-time algorithm for two graph bisection problems |
url |
https://doi.org/10.1007/s11128-015-1069-y |
remote_bool |
false |
ppnlink |
489255752 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11128-015-1069-y |
up_date |
2024-07-04T00:30:54.357Z |
_version_ |
1803606351527542784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207514754X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504015128.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11128-015-1069-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207514754X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11128-015-1069-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Younes, Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A bounded-error quantum polynomial-time algorithm for two graph bisection problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of the paper was to propose a bounded-error quantum polynomial-time algorithm for the max-bisection and the min-bisection problems. The max-bisection and the min-bisection problems are fundamental NP-hard problems. Given a graph with even number of vertices, the aim of the max-bisection problem is to divide the vertices into two subsets of the same size to maximize the number of edges between the two subsets, while the aim of the min-bisection problem is to minimize the number of edges between the two subsets. The proposed algorithm runs in $$O(m^2)$$ for a graph with m edges and in the worst case runs in $$O(n^4)$$ for a dense graph with n vertices. The proposed algorithm targets a general graph by representing both problems as Boolean constraint satisfaction problems where the set of satisfied constraints are simultaneously maximized/minimized using a novel iterative partial negation and partial measurement technique. The algorithm is shown to achieve an arbitrary high probability of success of $$1-\epsilon $$ for small $$\epsilon >0$$ using a polynomial space resources.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph bisection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Max-bisection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Min-bisection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amplitude amplification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BQP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NP-hard</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quantum information processing</subfield><subfield code="d">Springer US, 2002</subfield><subfield code="g">14(2015), 9 vom: 14. Juli, Seite 3161-3177</subfield><subfield code="w">(DE-627)489255752</subfield><subfield code="w">(DE-600)2191523-4</subfield><subfield code="w">(DE-576)9489255750</subfield><subfield code="x">1570-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">day:14</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:3161-3177</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11128-015-1069-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="q">VZ</subfield><subfield code="0">106407910</subfield><subfield code="0">(DE-625)106407910</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418815</subfield><subfield code="0">(DE-625)106418815</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="b">14</subfield><subfield code="c">07</subfield><subfield code="h">3161-3177</subfield></datafield></record></collection>
|
score |
7.401293 |