The regularity problem for generalized harmonic maps into homogeneous spaces
Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether&...
Ausführliche Beschreibung
Autor*in: |
Almeida, Luís [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Anmerkung: |
© Springer-Verlag 1995 |
---|
Übergeordnetes Werk: |
Enthalten in: Calculus of variations and partial differential equations - Springer-Verlag, 1993, 3(1995), 2 vom: März, Seite 193-242 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:1995 ; number:2 ; month:03 ; pages:193-242 |
Links: |
---|
DOI / URN: |
10.1007/BF01205005 |
---|
Katalog-ID: |
OLC2075186553 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2075186553 | ||
003 | DE-627 | ||
005 | 20230502114909.0 | ||
007 | tu | ||
008 | 200820s1995 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01205005 |2 doi | |
035 | |a (DE-627)OLC2075186553 | ||
035 | |a (DE-He213)BF01205005-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Almeida, Luís |e verfasserin |4 aut | |
245 | 1 | 0 | |a The regularity problem for generalized harmonic maps into homogeneous spaces |
264 | 1 | |c 1995 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1995 | ||
520 | |a Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. | ||
773 | 0 | 8 | |i Enthalten in |t Calculus of variations and partial differential equations |d Springer-Verlag, 1993 |g 3(1995), 2 vom: März, Seite 193-242 |w (DE-627)165669977 |w (DE-600)1144181-1 |w (DE-576)033045690 |x 0944-2669 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:1995 |g number:2 |g month:03 |g pages:193-242 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01205005 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 3 |j 1995 |e 2 |c 03 |h 193-242 |
author_variant |
l a la |
---|---|
matchkey_str |
article:09442669:1995----::hrglrtpolmognrlzdamncasn |
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
10.1007/BF01205005 doi (DE-627)OLC2075186553 (DE-He213)BF01205005-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Almeida, Luís verfasserin aut The regularity problem for generalized harmonic maps into homogeneous spaces 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. Enthalten in Calculus of variations and partial differential equations Springer-Verlag, 1993 3(1995), 2 vom: März, Seite 193-242 (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:3 year:1995 number:2 month:03 pages:193-242 https://doi.org/10.1007/BF01205005 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4325 AR 3 1995 2 03 193-242 |
spelling |
10.1007/BF01205005 doi (DE-627)OLC2075186553 (DE-He213)BF01205005-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Almeida, Luís verfasserin aut The regularity problem for generalized harmonic maps into homogeneous spaces 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. Enthalten in Calculus of variations and partial differential equations Springer-Verlag, 1993 3(1995), 2 vom: März, Seite 193-242 (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:3 year:1995 number:2 month:03 pages:193-242 https://doi.org/10.1007/BF01205005 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4325 AR 3 1995 2 03 193-242 |
allfields_unstemmed |
10.1007/BF01205005 doi (DE-627)OLC2075186553 (DE-He213)BF01205005-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Almeida, Luís verfasserin aut The regularity problem for generalized harmonic maps into homogeneous spaces 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. Enthalten in Calculus of variations and partial differential equations Springer-Verlag, 1993 3(1995), 2 vom: März, Seite 193-242 (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:3 year:1995 number:2 month:03 pages:193-242 https://doi.org/10.1007/BF01205005 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4325 AR 3 1995 2 03 193-242 |
allfieldsGer |
10.1007/BF01205005 doi (DE-627)OLC2075186553 (DE-He213)BF01205005-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Almeida, Luís verfasserin aut The regularity problem for generalized harmonic maps into homogeneous spaces 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. Enthalten in Calculus of variations and partial differential equations Springer-Verlag, 1993 3(1995), 2 vom: März, Seite 193-242 (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:3 year:1995 number:2 month:03 pages:193-242 https://doi.org/10.1007/BF01205005 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4325 AR 3 1995 2 03 193-242 |
allfieldsSound |
10.1007/BF01205005 doi (DE-627)OLC2075186553 (DE-He213)BF01205005-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Almeida, Luís verfasserin aut The regularity problem for generalized harmonic maps into homogeneous spaces 1995 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1995 Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. Enthalten in Calculus of variations and partial differential equations Springer-Verlag, 1993 3(1995), 2 vom: März, Seite 193-242 (DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 0944-2669 nnns volume:3 year:1995 number:2 month:03 pages:193-242 https://doi.org/10.1007/BF01205005 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4325 AR 3 1995 2 03 193-242 |
language |
English |
source |
Enthalten in Calculus of variations and partial differential equations 3(1995), 2 vom: März, Seite 193-242 volume:3 year:1995 number:2 month:03 pages:193-242 |
sourceStr |
Enthalten in Calculus of variations and partial differential equations 3(1995), 2 vom: März, Seite 193-242 volume:3 year:1995 number:2 month:03 pages:193-242 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Calculus of variations and partial differential equations |
authorswithroles_txt_mv |
Almeida, Luís @@aut@@ |
publishDateDaySort_date |
1995-03-01T00:00:00Z |
hierarchy_top_id |
165669977 |
dewey-sort |
3510 |
id |
OLC2075186553 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075186553</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114909.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01205005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075186553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01205005-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Almeida, Luís</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The regularity problem for generalized harmonic maps into homogeneous spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Calculus of variations and partial differential equations</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">3(1995), 2 vom: März, Seite 193-242</subfield><subfield code="w">(DE-627)165669977</subfield><subfield code="w">(DE-600)1144181-1</subfield><subfield code="w">(DE-576)033045690</subfield><subfield code="x">0944-2669</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:193-242</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01205005</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">1995</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">193-242</subfield></datafield></record></collection>
|
author |
Almeida, Luís |
spellingShingle |
Almeida, Luís ddc 510 ssgn 17,1 The regularity problem for generalized harmonic maps into homogeneous spaces |
authorStr |
Almeida, Luís |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669977 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-2669 |
topic_title |
510 VZ 17,1 ssgn The regularity problem for generalized harmonic maps into homogeneous spaces |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Calculus of variations and partial differential equations |
hierarchy_parent_id |
165669977 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Calculus of variations and partial differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669977 (DE-600)1144181-1 (DE-576)033045690 |
title |
The regularity problem for generalized harmonic maps into homogeneous spaces |
ctrlnum |
(DE-627)OLC2075186553 (DE-He213)BF01205005-p |
title_full |
The regularity problem for generalized harmonic maps into homogeneous spaces |
author_sort |
Almeida, Luís |
journal |
Calculus of variations and partial differential equations |
journalStr |
Calculus of variations and partial differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
txt |
container_start_page |
193 |
author_browse |
Almeida, Luís |
container_volume |
3 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Almeida, Luís |
doi_str_mv |
10.1007/BF01205005 |
dewey-full |
510 |
title_sort |
the regularity problem for generalized harmonic maps into homogeneous spaces |
title_auth |
The regularity problem for generalized harmonic maps into homogeneous spaces |
abstract |
Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. © Springer-Verlag 1995 |
abstractGer |
Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. © Springer-Verlag 1995 |
abstract_unstemmed |
Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality. © Springer-Verlag 1995 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4103 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4325 |
container_issue |
2 |
title_short |
The regularity problem for generalized harmonic maps into homogeneous spaces |
url |
https://doi.org/10.1007/BF01205005 |
remote_bool |
false |
ppnlink |
165669977 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01205005 |
up_date |
2024-07-04T00:37:46.243Z |
_version_ |
1803606783420268544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075186553</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114909.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1995 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01205005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075186553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01205005-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Almeida, Luís</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The regularity problem for generalized harmonic maps into homogeneous spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let ℳ be a Riemannian surface and$$\mathcal{N}$$ be a standard sphere, or more generally a Riemannian manifold on which a Lie group,Γ, acts transitively by isometries. We define generalized harmonic maps by extending the notion of weakly harmonic maps in a natural way (motivated by Noether's Theorem), to mapsu ε Wloc1,1(ℳ,$$\mathcal{N}$$). We prove that, under some slight technical restrictions, for 1 <-p < 2, there are generalized harmonic mapsu εW1,p(ℳ,$$\mathcal{N}$$) that are everywhere discontinuous (in particular, this solves an open problem proposed by F. Bethuel, H. Brezis and F. Hélein, in [BBH]). We also show that the natural ε-regularity condition for such maps is to require <u to belong to the Lorentz space L(2, ∞). To prove this ε-regularity result we extend a compensated compactness result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, proved in [CLMS], to the case of Lorentz spaces in duality.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Calculus of variations and partial differential equations</subfield><subfield code="d">Springer-Verlag, 1993</subfield><subfield code="g">3(1995), 2 vom: März, Seite 193-242</subfield><subfield code="w">(DE-627)165669977</subfield><subfield code="w">(DE-600)1144181-1</subfield><subfield code="w">(DE-576)033045690</subfield><subfield code="x">0944-2669</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:193-242</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01205005</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">1995</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">193-242</subfield></datafield></record></collection>
|
score |
7.4009867 |