On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code
Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd com...
Ausführliche Beschreibung
Autor*in: |
Bouyuklieva, Stefka [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Applicable algebra in engineering, communication and computing - Springer Berlin Heidelberg, 1990, 24(2013), 3-4 vom: 26. Juni, Seite 201-214 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2013 ; number:3-4 ; day:26 ; month:06 ; pages:201-214 |
Links: |
---|
DOI / URN: |
10.1007/s00200-013-0193-0 |
---|
Katalog-ID: |
OLC2075499071 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2075499071 | ||
003 | DE-627 | ||
005 | 20230323151944.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00200-013-0193-0 |2 doi | |
035 | |a (DE-627)OLC2075499071 | ||
035 | |a (DE-He213)s00200-013-0193-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 620 |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |a 600 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Bouyuklieva, Stefka |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2013 | ||
520 | |a Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. | ||
650 | 4 | |a Self-dual codes | |
650 | 4 | |a Automorphisms | |
650 | 4 | |a Extremal codes | |
700 | 1 | |a de la Cruz, Javier |4 aut | |
700 | 1 | |a Willems, Wolfgang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applicable algebra in engineering, communication and computing |d Springer Berlin Heidelberg, 1990 |g 24(2013), 3-4 vom: 26. Juni, Seite 201-214 |w (DE-627)130915807 |w (DE-600)1051032-1 |w (DE-576)025004964 |x 0938-1279 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2013 |g number:3-4 |g day:26 |g month:06 |g pages:201-214 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00200-013-0193-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4247 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 24 |j 2013 |e 3-4 |b 26 |c 06 |h 201-214 |
author_variant |
s b sb l c j d lcj lcjd w w ww |
---|---|
matchkey_str |
article:09381279:2013----::nhatmrhsgopfbnrsld |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s00200-013-0193-0 doi (DE-627)OLC2075499071 (DE-He213)s00200-013-0193-0-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Bouyuklieva, Stefka verfasserin aut On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. Self-dual codes Automorphisms Extremal codes de la Cruz, Javier aut Willems, Wolfgang aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 24(2013), 3-4 vom: 26. Juni, Seite 201-214 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 https://doi.org/10.1007/s00200-013-0193-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4126 GBV_ILN_4247 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4318 AR 24 2013 3-4 26 06 201-214 |
spelling |
10.1007/s00200-013-0193-0 doi (DE-627)OLC2075499071 (DE-He213)s00200-013-0193-0-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Bouyuklieva, Stefka verfasserin aut On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. Self-dual codes Automorphisms Extremal codes de la Cruz, Javier aut Willems, Wolfgang aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 24(2013), 3-4 vom: 26. Juni, Seite 201-214 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 https://doi.org/10.1007/s00200-013-0193-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4126 GBV_ILN_4247 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4318 AR 24 2013 3-4 26 06 201-214 |
allfields_unstemmed |
10.1007/s00200-013-0193-0 doi (DE-627)OLC2075499071 (DE-He213)s00200-013-0193-0-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Bouyuklieva, Stefka verfasserin aut On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. Self-dual codes Automorphisms Extremal codes de la Cruz, Javier aut Willems, Wolfgang aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 24(2013), 3-4 vom: 26. Juni, Seite 201-214 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 https://doi.org/10.1007/s00200-013-0193-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4126 GBV_ILN_4247 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4318 AR 24 2013 3-4 26 06 201-214 |
allfieldsGer |
10.1007/s00200-013-0193-0 doi (DE-627)OLC2075499071 (DE-He213)s00200-013-0193-0-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Bouyuklieva, Stefka verfasserin aut On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. Self-dual codes Automorphisms Extremal codes de la Cruz, Javier aut Willems, Wolfgang aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 24(2013), 3-4 vom: 26. Juni, Seite 201-214 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 https://doi.org/10.1007/s00200-013-0193-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4126 GBV_ILN_4247 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4318 AR 24 2013 3-4 26 06 201-214 |
allfieldsSound |
10.1007/s00200-013-0193-0 doi (DE-627)OLC2075499071 (DE-He213)s00200-013-0193-0-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Bouyuklieva, Stefka verfasserin aut On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. Self-dual codes Automorphisms Extremal codes de la Cruz, Javier aut Willems, Wolfgang aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 24(2013), 3-4 vom: 26. Juni, Seite 201-214 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 https://doi.org/10.1007/s00200-013-0193-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4126 GBV_ILN_4247 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4318 AR 24 2013 3-4 26 06 201-214 |
language |
English |
source |
Enthalten in Applicable algebra in engineering, communication and computing 24(2013), 3-4 vom: 26. Juni, Seite 201-214 volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 |
sourceStr |
Enthalten in Applicable algebra in engineering, communication and computing 24(2013), 3-4 vom: 26. Juni, Seite 201-214 volume:24 year:2013 number:3-4 day:26 month:06 pages:201-214 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Self-dual codes Automorphisms Extremal codes |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applicable algebra in engineering, communication and computing |
authorswithroles_txt_mv |
Bouyuklieva, Stefka @@aut@@ de la Cruz, Javier @@aut@@ Willems, Wolfgang @@aut@@ |
publishDateDaySort_date |
2013-06-26T00:00:00Z |
hierarchy_top_id |
130915807 |
dewey-sort |
3510 |
id |
OLC2075499071 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075499071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323151944.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00200-013-0193-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075499071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00200-013-0193-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bouyuklieva, Stefka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-dual codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremal codes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de la Cruz, Javier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willems, Wolfgang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applicable algebra in engineering, communication and computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1990</subfield><subfield code="g">24(2013), 3-4 vom: 26. Juni, Seite 201-214</subfield><subfield code="w">(DE-627)130915807</subfield><subfield code="w">(DE-600)1051032-1</subfield><subfield code="w">(DE-576)025004964</subfield><subfield code="x">0938-1279</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:201-214</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00200-013-0193-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2013</subfield><subfield code="e">3-4</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield><subfield code="h">201-214</subfield></datafield></record></collection>
|
author |
Bouyuklieva, Stefka |
spellingShingle |
Bouyuklieva, Stefka ddc 510 ssgn 11 misc Self-dual codes misc Automorphisms misc Extremal codes On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
authorStr |
Bouyuklieva, Stefka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130915807 |
format |
Article |
dewey-ones |
510 - Mathematics 620 - Engineering & allied operations 004 - Data processing & computer science 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0938-1279 |
topic_title |
510 620 004 VZ 510 004 600 VZ 11 ssgn On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code Self-dual codes Automorphisms Extremal codes |
topic |
ddc 510 ssgn 11 misc Self-dual codes misc Automorphisms misc Extremal codes |
topic_unstemmed |
ddc 510 ssgn 11 misc Self-dual codes misc Automorphisms misc Extremal codes |
topic_browse |
ddc 510 ssgn 11 misc Self-dual codes misc Automorphisms misc Extremal codes |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applicable algebra in engineering, communication and computing |
hierarchy_parent_id |
130915807 |
dewey-tens |
510 - Mathematics 620 - Engineering 000 - Computer science, knowledge & systems 600 - Technology |
hierarchy_top_title |
Applicable algebra in engineering, communication and computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 |
title |
On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
ctrlnum |
(DE-627)OLC2075499071 (DE-He213)s00200-013-0193-0-p |
title_full |
On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
author_sort |
Bouyuklieva, Stefka |
journal |
Applicable algebra in engineering, communication and computing |
journalStr |
Applicable algebra in engineering, communication and computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
201 |
author_browse |
Bouyuklieva, Stefka de la Cruz, Javier Willems, Wolfgang |
container_volume |
24 |
class |
510 620 004 VZ 510 004 600 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Bouyuklieva, Stefka |
doi_str_mv |
10.1007/s00200-013-0193-0 |
dewey-full |
510 620 004 600 |
title_sort |
on the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
title_auth |
On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
abstract |
Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. © Springer-Verlag Berlin Heidelberg 2013 |
abstractGer |
Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. © Springer-Verlag Berlin Heidelberg 2013 |
abstract_unstemmed |
Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$. © Springer-Verlag Berlin Heidelberg 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4126 GBV_ILN_4247 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4318 |
container_issue |
3-4 |
title_short |
On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code |
url |
https://doi.org/10.1007/s00200-013-0193-0 |
remote_bool |
false |
author2 |
de la Cruz, Javier Willems, Wolfgang |
author2Str |
de la Cruz, Javier Willems, Wolfgang |
ppnlink |
130915807 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00200-013-0193-0 |
up_date |
2024-07-04T01:29:59.451Z |
_version_ |
1803610068830126080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075499071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323151944.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00200-013-0193-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075499071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00200-013-0193-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bouyuklieva, Stefka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the automorphism group of a binary self-dual $$[120, 60, 24]$$ code</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that an automorphism of order 3 of a putative binary self-dual $$[120, 60, 24]$$ code $$C$$ has no fixed points. Moreover, the order of the automorphism group of $$C$$ divides $$2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$$ with $$a\in \mathbb N _0$$. Automorphisms of odd composite order $$r$$ may occur only for $$r=15, 57$$ or $$r=115$$ with corresponding cycle structures $$3 \cdot 5$$-$$(0,0,8;0), 3\cdot 19$$-$$(2,0,2;0)$$ or $$5 \cdot 23$$-$$(1,0,1;0)$$ respectively. In case that all involutions act fixed point freely we have $$|\mathrm{Aut}(C)| \le 920$$, and $$\mathrm{Aut}(C)$$ is solvable if it contains an element of prime order $$p \ge 7$$. Moreover, the alternating group $$\mathrm{A}_5$$ is the only non-abelian composition factor which may occur in $$\mathrm{Aut}(C)$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-dual codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremal codes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de la Cruz, Javier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willems, Wolfgang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applicable algebra in engineering, communication and computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1990</subfield><subfield code="g">24(2013), 3-4 vom: 26. Juni, Seite 201-214</subfield><subfield code="w">(DE-627)130915807</subfield><subfield code="w">(DE-600)1051032-1</subfield><subfield code="w">(DE-576)025004964</subfield><subfield code="x">0938-1279</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:201-214</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00200-013-0193-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2013</subfield><subfield code="e">3-4</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield><subfield code="h">201-214</subfield></datafield></record></collection>
|
score |
7.4020357 |