Multidimensional linear complexity analysis of periodic arrays
Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of seq...
Ausführliche Beschreibung
Autor*in: |
Arce-Nazario, Rafael [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Applicable algebra in engineering, communication and computing - Springer Berlin Heidelberg, 1990, 31(2019), 1 vom: 05. Juli, Seite 43-63 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2019 ; number:1 ; day:05 ; month:07 ; pages:43-63 |
Links: |
---|
DOI / URN: |
10.1007/s00200-019-00393-z |
---|
Katalog-ID: |
OLC2075501033 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2075501033 | ||
003 | DE-627 | ||
005 | 20230323152009.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00200-019-00393-z |2 doi | |
035 | |a (DE-627)OLC2075501033 | ||
035 | |a (DE-He213)s00200-019-00393-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 620 |a 004 |q VZ |
082 | 0 | 4 | |a 510 |a 004 |a 600 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Arce-Nazario, Rafael |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multidimensional linear complexity analysis of periodic arrays |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. | ||
650 | 4 | |a Linear complexity | |
650 | 4 | |a Multidimensional linear complexity | |
650 | 4 | |a Periodic arrays | |
650 | 4 | |a Multidimensional arrays | |
650 | 4 | |a Multisequences | |
650 | 4 | |a Gröbner bases | |
700 | 1 | |a Castro, Francis |4 aut | |
700 | 1 | |a Gomez-Perez, Domingo |4 aut | |
700 | 1 | |a Moreno, Oscar |4 aut | |
700 | 1 | |a Ortiz-Ubarri, José |4 aut | |
700 | 1 | |a Rubio, Ivelisse |4 aut | |
700 | 1 | |a Tirkel, Andrew |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applicable algebra in engineering, communication and computing |d Springer Berlin Heidelberg, 1990 |g 31(2019), 1 vom: 05. Juli, Seite 43-63 |w (DE-627)130915807 |w (DE-600)1051032-1 |w (DE-576)025004964 |x 0938-1279 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2019 |g number:1 |g day:05 |g month:07 |g pages:43-63 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00200-019-00393-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4247 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 31 |j 2019 |e 1 |b 05 |c 07 |h 43-63 |
author_variant |
r a n ran f c fc d g p dgp o m om j o u jou i r ir a t at |
---|---|
matchkey_str |
article:09381279:2019----::utdmninlieropeiynlssf |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00200-019-00393-z doi (DE-627)OLC2075501033 (DE-He213)s00200-019-00393-z-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Arce-Nazario, Rafael verfasserin aut Multidimensional linear complexity analysis of periodic arrays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases Castro, Francis aut Gomez-Perez, Domingo aut Moreno, Oscar aut Ortiz-Ubarri, José aut Rubio, Ivelisse aut Tirkel, Andrew aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 31(2019), 1 vom: 05. Juli, Seite 43-63 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:31 year:2019 number:1 day:05 month:07 pages:43-63 https://doi.org/10.1007/s00200-019-00393-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4318 AR 31 2019 1 05 07 43-63 |
spelling |
10.1007/s00200-019-00393-z doi (DE-627)OLC2075501033 (DE-He213)s00200-019-00393-z-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Arce-Nazario, Rafael verfasserin aut Multidimensional linear complexity analysis of periodic arrays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases Castro, Francis aut Gomez-Perez, Domingo aut Moreno, Oscar aut Ortiz-Ubarri, José aut Rubio, Ivelisse aut Tirkel, Andrew aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 31(2019), 1 vom: 05. Juli, Seite 43-63 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:31 year:2019 number:1 day:05 month:07 pages:43-63 https://doi.org/10.1007/s00200-019-00393-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4318 AR 31 2019 1 05 07 43-63 |
allfields_unstemmed |
10.1007/s00200-019-00393-z doi (DE-627)OLC2075501033 (DE-He213)s00200-019-00393-z-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Arce-Nazario, Rafael verfasserin aut Multidimensional linear complexity analysis of periodic arrays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases Castro, Francis aut Gomez-Perez, Domingo aut Moreno, Oscar aut Ortiz-Ubarri, José aut Rubio, Ivelisse aut Tirkel, Andrew aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 31(2019), 1 vom: 05. Juli, Seite 43-63 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:31 year:2019 number:1 day:05 month:07 pages:43-63 https://doi.org/10.1007/s00200-019-00393-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4318 AR 31 2019 1 05 07 43-63 |
allfieldsGer |
10.1007/s00200-019-00393-z doi (DE-627)OLC2075501033 (DE-He213)s00200-019-00393-z-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Arce-Nazario, Rafael verfasserin aut Multidimensional linear complexity analysis of periodic arrays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases Castro, Francis aut Gomez-Perez, Domingo aut Moreno, Oscar aut Ortiz-Ubarri, José aut Rubio, Ivelisse aut Tirkel, Andrew aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 31(2019), 1 vom: 05. Juli, Seite 43-63 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:31 year:2019 number:1 day:05 month:07 pages:43-63 https://doi.org/10.1007/s00200-019-00393-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4318 AR 31 2019 1 05 07 43-63 |
allfieldsSound |
10.1007/s00200-019-00393-z doi (DE-627)OLC2075501033 (DE-He213)s00200-019-00393-z-p DE-627 ger DE-627 rakwb eng 510 620 004 VZ 510 004 600 VZ 11 ssgn Arce-Nazario, Rafael verfasserin aut Multidimensional linear complexity analysis of periodic arrays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases Castro, Francis aut Gomez-Perez, Domingo aut Moreno, Oscar aut Ortiz-Ubarri, José aut Rubio, Ivelisse aut Tirkel, Andrew aut Enthalten in Applicable algebra in engineering, communication and computing Springer Berlin Heidelberg, 1990 31(2019), 1 vom: 05. Juli, Seite 43-63 (DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 0938-1279 nnns volume:31 year:2019 number:1 day:05 month:07 pages:43-63 https://doi.org/10.1007/s00200-019-00393-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4318 AR 31 2019 1 05 07 43-63 |
language |
English |
source |
Enthalten in Applicable algebra in engineering, communication and computing 31(2019), 1 vom: 05. Juli, Seite 43-63 volume:31 year:2019 number:1 day:05 month:07 pages:43-63 |
sourceStr |
Enthalten in Applicable algebra in engineering, communication and computing 31(2019), 1 vom: 05. Juli, Seite 43-63 volume:31 year:2019 number:1 day:05 month:07 pages:43-63 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applicable algebra in engineering, communication and computing |
authorswithroles_txt_mv |
Arce-Nazario, Rafael @@aut@@ Castro, Francis @@aut@@ Gomez-Perez, Domingo @@aut@@ Moreno, Oscar @@aut@@ Ortiz-Ubarri, José @@aut@@ Rubio, Ivelisse @@aut@@ Tirkel, Andrew @@aut@@ |
publishDateDaySort_date |
2019-07-05T00:00:00Z |
hierarchy_top_id |
130915807 |
dewey-sort |
3510 |
id |
OLC2075501033 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075501033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323152009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00200-019-00393-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075501033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00200-019-00393-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arce-Nazario, Rafael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multidimensional linear complexity analysis of periodic arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidimensional linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidimensional arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multisequences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gröbner bases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castro, Francis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomez-Perez, Domingo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moreno, Oscar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ortiz-Ubarri, José</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubio, Ivelisse</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tirkel, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applicable algebra in engineering, communication and computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1990</subfield><subfield code="g">31(2019), 1 vom: 05. Juli, Seite 43-63</subfield><subfield code="w">(DE-627)130915807</subfield><subfield code="w">(DE-600)1051032-1</subfield><subfield code="w">(DE-576)025004964</subfield><subfield code="x">0938-1279</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:43-63</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00200-019-00393-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">07</subfield><subfield code="h">43-63</subfield></datafield></record></collection>
|
author |
Arce-Nazario, Rafael |
spellingShingle |
Arce-Nazario, Rafael ddc 510 ssgn 11 misc Linear complexity misc Multidimensional linear complexity misc Periodic arrays misc Multidimensional arrays misc Multisequences misc Gröbner bases Multidimensional linear complexity analysis of periodic arrays |
authorStr |
Arce-Nazario, Rafael |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130915807 |
format |
Article |
dewey-ones |
510 - Mathematics 620 - Engineering & allied operations 004 - Data processing & computer science 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0938-1279 |
topic_title |
510 620 004 VZ 510 004 600 VZ 11 ssgn Multidimensional linear complexity analysis of periodic arrays Linear complexity Multidimensional linear complexity Periodic arrays Multidimensional arrays Multisequences Gröbner bases |
topic |
ddc 510 ssgn 11 misc Linear complexity misc Multidimensional linear complexity misc Periodic arrays misc Multidimensional arrays misc Multisequences misc Gröbner bases |
topic_unstemmed |
ddc 510 ssgn 11 misc Linear complexity misc Multidimensional linear complexity misc Periodic arrays misc Multidimensional arrays misc Multisequences misc Gröbner bases |
topic_browse |
ddc 510 ssgn 11 misc Linear complexity misc Multidimensional linear complexity misc Periodic arrays misc Multidimensional arrays misc Multisequences misc Gröbner bases |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applicable algebra in engineering, communication and computing |
hierarchy_parent_id |
130915807 |
dewey-tens |
510 - Mathematics 620 - Engineering 000 - Computer science, knowledge & systems 600 - Technology |
hierarchy_top_title |
Applicable algebra in engineering, communication and computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130915807 (DE-600)1051032-1 (DE-576)025004964 |
title |
Multidimensional linear complexity analysis of periodic arrays |
ctrlnum |
(DE-627)OLC2075501033 (DE-He213)s00200-019-00393-z-p |
title_full |
Multidimensional linear complexity analysis of periodic arrays |
author_sort |
Arce-Nazario, Rafael |
journal |
Applicable algebra in engineering, communication and computing |
journalStr |
Applicable algebra in engineering, communication and computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
43 |
author_browse |
Arce-Nazario, Rafael Castro, Francis Gomez-Perez, Domingo Moreno, Oscar Ortiz-Ubarri, José Rubio, Ivelisse Tirkel, Andrew |
container_volume |
31 |
class |
510 620 004 VZ 510 004 600 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Arce-Nazario, Rafael |
doi_str_mv |
10.1007/s00200-019-00393-z |
dewey-full |
510 620 004 600 |
title_sort |
multidimensional linear complexity analysis of periodic arrays |
title_auth |
Multidimensional linear complexity analysis of periodic arrays |
abstract |
Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Multidimensional linear complexity analysis of periodic arrays |
url |
https://doi.org/10.1007/s00200-019-00393-z |
remote_bool |
false |
author2 |
Castro, Francis Gomez-Perez, Domingo Moreno, Oscar Ortiz-Ubarri, José Rubio, Ivelisse Tirkel, Andrew |
author2Str |
Castro, Francis Gomez-Perez, Domingo Moreno, Oscar Ortiz-Ubarri, José Rubio, Ivelisse Tirkel, Andrew |
ppnlink |
130915807 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00200-019-00393-z |
up_date |
2024-07-04T01:30:16.702Z |
_version_ |
1803610086914916352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075501033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323152009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00200-019-00393-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075501033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00200-019-00393-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">620</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arce-Nazario, Rafael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multidimensional linear complexity analysis of periodic arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The linear complexity of a sequence is an important parameter for many applications, especially those related to information security, and hardware implementation. It is desirable to develop a corresponding measure and theory for multidimensional arrays that are consistent with those of sequences. In this paper we use Gröbner bases to develop a theory for analyzing the multidimensional linear complexity of general periodic arrays. We also analyze arrays constructed using the method of composition and establish tight bounds for their multidimensional linear complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidimensional linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidimensional arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multisequences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gröbner bases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castro, Francis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomez-Perez, Domingo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moreno, Oscar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ortiz-Ubarri, José</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubio, Ivelisse</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tirkel, Andrew</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applicable algebra in engineering, communication and computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1990</subfield><subfield code="g">31(2019), 1 vom: 05. Juli, Seite 43-63</subfield><subfield code="w">(DE-627)130915807</subfield><subfield code="w">(DE-600)1051032-1</subfield><subfield code="w">(DE-576)025004964</subfield><subfield code="x">0938-1279</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:43-63</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00200-019-00393-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">07</subfield><subfield code="h">43-63</subfield></datafield></record></collection>
|
score |
7.399535 |