First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis
Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic su...
Ausführliche Beschreibung
Autor*in: |
Pérez-Claros, Juan A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Anmerkung: |
© International Association for Mathematical Geology 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical geology - Kluwer Academic Publishers-Plenum Publishers, 1986, 34(2002), 3 vom: Apr., Seite 323-343 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2002 ; number:3 ; month:04 ; pages:323-343 |
Links: |
---|
DOI / URN: |
10.1023/A:1014847007351 |
---|
Katalog-ID: |
OLC2075568545 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2075568545 | ||
003 | DE-627 | ||
005 | 20230503173839.0 | ||
007 | tu | ||
008 | 200820s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1014847007351 |2 doi | |
035 | |a (DE-627)OLC2075568545 | ||
035 | |a (DE-He213)A:1014847007351-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 510 |q VZ |
084 | |a 13 |2 ssgn | ||
100 | 1 | |a Pérez-Claros, Juan A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © International Association for Mathematical Geology 2002 | ||
520 | |a Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. | ||
700 | 1 | |a Palmqvist, Paul |4 aut | |
700 | 1 | |a Olóriz, Federico |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematical geology |d Kluwer Academic Publishers-Plenum Publishers, 1986 |g 34(2002), 3 vom: Apr., Seite 323-343 |w (DE-627)129581798 |w (DE-600)232696-6 |w (DE-576)015075346 |x 0882-8121 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2002 |g number:3 |g month:04 |g pages:323-343 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1014847007351 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4311 | ||
951 | |a AR | ||
952 | |d 34 |j 2002 |e 3 |c 04 |h 323-343 |
author_variant |
j a p c jap japc p p pp f o fo |
---|---|
matchkey_str |
article:08828121:2002----::isadeodresfuueopeiynmoieaemtoooiaa |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1023/A:1014847007351 doi (DE-627)OLC2075568545 (DE-He213)A:1014847007351-p DE-627 ger DE-627 rakwb eng 550 510 VZ 13 ssgn Pérez-Claros, Juan A. verfasserin aut First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © International Association for Mathematical Geology 2002 Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. Palmqvist, Paul aut Olóriz, Federico aut Enthalten in Mathematical geology Kluwer Academic Publishers-Plenum Publishers, 1986 34(2002), 3 vom: Apr., Seite 323-343 (DE-627)129581798 (DE-600)232696-6 (DE-576)015075346 0882-8121 nnns volume:34 year:2002 number:3 month:04 pages:323-343 https://doi.org/10.1023/A:1014847007351 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4311 AR 34 2002 3 04 323-343 |
spelling |
10.1023/A:1014847007351 doi (DE-627)OLC2075568545 (DE-He213)A:1014847007351-p DE-627 ger DE-627 rakwb eng 550 510 VZ 13 ssgn Pérez-Claros, Juan A. verfasserin aut First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © International Association for Mathematical Geology 2002 Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. Palmqvist, Paul aut Olóriz, Federico aut Enthalten in Mathematical geology Kluwer Academic Publishers-Plenum Publishers, 1986 34(2002), 3 vom: Apr., Seite 323-343 (DE-627)129581798 (DE-600)232696-6 (DE-576)015075346 0882-8121 nnns volume:34 year:2002 number:3 month:04 pages:323-343 https://doi.org/10.1023/A:1014847007351 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4311 AR 34 2002 3 04 323-343 |
allfields_unstemmed |
10.1023/A:1014847007351 doi (DE-627)OLC2075568545 (DE-He213)A:1014847007351-p DE-627 ger DE-627 rakwb eng 550 510 VZ 13 ssgn Pérez-Claros, Juan A. verfasserin aut First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © International Association for Mathematical Geology 2002 Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. Palmqvist, Paul aut Olóriz, Federico aut Enthalten in Mathematical geology Kluwer Academic Publishers-Plenum Publishers, 1986 34(2002), 3 vom: Apr., Seite 323-343 (DE-627)129581798 (DE-600)232696-6 (DE-576)015075346 0882-8121 nnns volume:34 year:2002 number:3 month:04 pages:323-343 https://doi.org/10.1023/A:1014847007351 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4311 AR 34 2002 3 04 323-343 |
allfieldsGer |
10.1023/A:1014847007351 doi (DE-627)OLC2075568545 (DE-He213)A:1014847007351-p DE-627 ger DE-627 rakwb eng 550 510 VZ 13 ssgn Pérez-Claros, Juan A. verfasserin aut First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © International Association for Mathematical Geology 2002 Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. Palmqvist, Paul aut Olóriz, Federico aut Enthalten in Mathematical geology Kluwer Academic Publishers-Plenum Publishers, 1986 34(2002), 3 vom: Apr., Seite 323-343 (DE-627)129581798 (DE-600)232696-6 (DE-576)015075346 0882-8121 nnns volume:34 year:2002 number:3 month:04 pages:323-343 https://doi.org/10.1023/A:1014847007351 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4311 AR 34 2002 3 04 323-343 |
allfieldsSound |
10.1023/A:1014847007351 doi (DE-627)OLC2075568545 (DE-He213)A:1014847007351-p DE-627 ger DE-627 rakwb eng 550 510 VZ 13 ssgn Pérez-Claros, Juan A. verfasserin aut First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © International Association for Mathematical Geology 2002 Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. Palmqvist, Paul aut Olóriz, Federico aut Enthalten in Mathematical geology Kluwer Academic Publishers-Plenum Publishers, 1986 34(2002), 3 vom: Apr., Seite 323-343 (DE-627)129581798 (DE-600)232696-6 (DE-576)015075346 0882-8121 nnns volume:34 year:2002 number:3 month:04 pages:323-343 https://doi.org/10.1023/A:1014847007351 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4311 AR 34 2002 3 04 323-343 |
language |
English |
source |
Enthalten in Mathematical geology 34(2002), 3 vom: Apr., Seite 323-343 volume:34 year:2002 number:3 month:04 pages:323-343 |
sourceStr |
Enthalten in Mathematical geology 34(2002), 3 vom: Apr., Seite 323-343 volume:34 year:2002 number:3 month:04 pages:323-343 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Mathematical geology |
authorswithroles_txt_mv |
Pérez-Claros, Juan A. @@aut@@ Palmqvist, Paul @@aut@@ Olóriz, Federico @@aut@@ |
publishDateDaySort_date |
2002-04-01T00:00:00Z |
hierarchy_top_id |
129581798 |
dewey-sort |
3550 |
id |
OLC2075568545 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075568545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503173839.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1014847007351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075568545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1014847007351-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pérez-Claros, Juan A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Association for Mathematical Geology 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmqvist, Paul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olóriz, Federico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical geology</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1986</subfield><subfield code="g">34(2002), 3 vom: Apr., Seite 323-343</subfield><subfield code="w">(DE-627)129581798</subfield><subfield code="w">(DE-600)232696-6</subfield><subfield code="w">(DE-576)015075346</subfield><subfield code="x">0882-8121</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:323-343</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1014847007351</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2002</subfield><subfield code="e">3</subfield><subfield code="c">04</subfield><subfield code="h">323-343</subfield></datafield></record></collection>
|
author |
Pérez-Claros, Juan A. |
spellingShingle |
Pérez-Claros, Juan A. ddc 550 ssgn 13 First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
authorStr |
Pérez-Claros, Juan A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129581798 |
format |
Article |
dewey-ones |
550 - Earth sciences 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0882-8121 |
topic_title |
550 510 VZ 13 ssgn First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
topic |
ddc 550 ssgn 13 |
topic_unstemmed |
ddc 550 ssgn 13 |
topic_browse |
ddc 550 ssgn 13 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematical geology |
hierarchy_parent_id |
129581798 |
dewey-tens |
550 - Earth sciences & geology 510 - Mathematics |
hierarchy_top_title |
Mathematical geology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129581798 (DE-600)232696-6 (DE-576)015075346 |
title |
First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
ctrlnum |
(DE-627)OLC2075568545 (DE-He213)A:1014847007351-p |
title_full |
First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
author_sort |
Pérez-Claros, Juan A. |
journal |
Mathematical geology |
journalStr |
Mathematical geology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
323 |
author_browse |
Pérez-Claros, Juan A. Palmqvist, Paul Olóriz, Federico |
container_volume |
34 |
class |
550 510 VZ 13 ssgn |
format_se |
Aufsätze |
author-letter |
Pérez-Claros, Juan A. |
doi_str_mv |
10.1023/A:1014847007351 |
dewey-full |
550 510 |
title_sort |
first and second orders of suture complexity in ammonites: a new methodological approach using fractal analysis |
title_auth |
First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
abstract |
Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. © International Association for Mathematical Geology 2002 |
abstractGer |
Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. © International Association for Mathematical Geology 2002 |
abstract_unstemmed |
Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms. © International Association for Mathematical Geology 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4311 |
container_issue |
3 |
title_short |
First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis |
url |
https://doi.org/10.1023/A:1014847007351 |
remote_bool |
false |
author2 |
Palmqvist, Paul Olóriz, Federico |
author2Str |
Palmqvist, Paul Olóriz, Federico |
ppnlink |
129581798 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1014847007351 |
up_date |
2024-07-04T01:40:06.265Z |
_version_ |
1803610705117577216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2075568545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503173839.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1014847007351</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2075568545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1014847007351-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pérez-Claros, Juan A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">First and Second Orders of Suture Complexity in Ammonites: A New Methodological Approach Using Fractal Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Association for Mathematical Geology 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The study of septal patterns in ammonoids has been centered on functional and/or constructional issues. Complexly fluted septa have been considered as complementary structures that reinforce the ammonite shell, their frilled sutures possibly manifesting the demand for strength. Ammonitic sutures display features that denote typical fractal behavior, since they can present very long perimeters relative to the contiguous shell areas, and most provide evidence of statistical self-similarity when observed at varying scales of magnification. However, there is a lower limit of scale measurements below which the fractal behavior of the curve no longer holds, and the perimeter length/step size relationship approaches an Euclidean geometry. This paper describes a new methodology that allows the accurate characterization of suture complexity in ammonoids using the technique of fractal analysis (step-line procedure). The proposed methodology helps to fix the position of this “cut-off point,” allowing for independent estimates of the fractal dimensions of the curve for both large and small measurement scales (i.e., first and second orders of suture complexity). This approach improves the resolution of fractals in the analysis of suture complexity, thus facilitating the potential interpretation of suture patterns in functional/constructional, evolutionary and paleoecological terms.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmqvist, Paul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olóriz, Federico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical geology</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1986</subfield><subfield code="g">34(2002), 3 vom: Apr., Seite 323-343</subfield><subfield code="w">(DE-627)129581798</subfield><subfield code="w">(DE-600)232696-6</subfield><subfield code="w">(DE-576)015075346</subfield><subfield code="x">0882-8121</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:323-343</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1014847007351</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2002</subfield><subfield code="e">3</subfield><subfield code="c">04</subfield><subfield code="h">323-343</subfield></datafield></record></collection>
|
score |
7.402112 |