Shape mixing as an approximation to shell $ model^{24} $Ne
Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well wit...
Ausführliche Beschreibung
Autor*in: |
Khadkikar, S B [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1974 |
---|
Schlagwörter: |
---|
Anmerkung: |
© the Indian Academy of Sciences 1974 |
---|
Übergeordnetes Werk: |
Enthalten in: Pramāna - Springer India, 1973, 2(1974), 5 vom: Mai, Seite 259-268 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:1974 ; number:5 ; month:05 ; pages:259-268 |
Links: |
---|
DOI / URN: |
10.1007/BF02847082 |
---|
Katalog-ID: |
OLC2076001174 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2076001174 | ||
003 | DE-627 | ||
005 | 20230402042234.0 | ||
007 | tu | ||
008 | 200820s1974 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02847082 |2 doi | |
035 | |a (DE-627)OLC2076001174 | ||
035 | |a (DE-He213)BF02847082-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Khadkikar, S B |e verfasserin |4 aut | |
245 | 1 | 0 | |a Shape mixing as an approximation to shell $ model^{24} $Ne |
264 | 1 | |c 1974 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © the Indian Academy of Sciences 1974 | ||
520 | |a Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. | ||
650 | 4 | |a Band mixing | |
650 | 4 | |a energy spectrum | |
650 | 4 | |a E2 transition probabilities | |
650 | 4 | |a Ne | |
700 | 1 | |a Kulkarni, D R |4 aut | |
700 | 1 | |a Pandya, S P |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Pramāna |d Springer India, 1973 |g 2(1974), 5 vom: Mai, Seite 259-268 |w (DE-627)129403342 |w (DE-600)186949-8 |w (DE-576)014785102 |x 0304-4289 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:1974 |g number:5 |g month:05 |g pages:259-268 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02847082 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4309 | ||
951 | |a AR | ||
952 | |d 2 |j 1974 |e 5 |c 05 |h 259-268 |
author_variant |
s b k sb sbk d r k dr drk s p p sp spp |
---|---|
matchkey_str |
article:03044289:1974----::hpmxnaaapoiainoh |
hierarchy_sort_str |
1974 |
publishDate |
1974 |
allfields |
10.1007/BF02847082 doi (DE-627)OLC2076001174 (DE-He213)BF02847082-p DE-627 ger DE-627 rakwb eng 530 VZ Khadkikar, S B verfasserin aut Shape mixing as an approximation to shell $ model^{24} $Ne 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © the Indian Academy of Sciences 1974 Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. Band mixing energy spectrum E2 transition probabilities Ne Kulkarni, D R aut Pandya, S P aut Enthalten in Pramāna Springer India, 1973 2(1974), 5 vom: Mai, Seite 259-268 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:2 year:1974 number:5 month:05 pages:259-268 https://doi.org/10.1007/BF02847082 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4309 AR 2 1974 5 05 259-268 |
spelling |
10.1007/BF02847082 doi (DE-627)OLC2076001174 (DE-He213)BF02847082-p DE-627 ger DE-627 rakwb eng 530 VZ Khadkikar, S B verfasserin aut Shape mixing as an approximation to shell $ model^{24} $Ne 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © the Indian Academy of Sciences 1974 Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. Band mixing energy spectrum E2 transition probabilities Ne Kulkarni, D R aut Pandya, S P aut Enthalten in Pramāna Springer India, 1973 2(1974), 5 vom: Mai, Seite 259-268 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:2 year:1974 number:5 month:05 pages:259-268 https://doi.org/10.1007/BF02847082 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4309 AR 2 1974 5 05 259-268 |
allfields_unstemmed |
10.1007/BF02847082 doi (DE-627)OLC2076001174 (DE-He213)BF02847082-p DE-627 ger DE-627 rakwb eng 530 VZ Khadkikar, S B verfasserin aut Shape mixing as an approximation to shell $ model^{24} $Ne 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © the Indian Academy of Sciences 1974 Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. Band mixing energy spectrum E2 transition probabilities Ne Kulkarni, D R aut Pandya, S P aut Enthalten in Pramāna Springer India, 1973 2(1974), 5 vom: Mai, Seite 259-268 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:2 year:1974 number:5 month:05 pages:259-268 https://doi.org/10.1007/BF02847082 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4309 AR 2 1974 5 05 259-268 |
allfieldsGer |
10.1007/BF02847082 doi (DE-627)OLC2076001174 (DE-He213)BF02847082-p DE-627 ger DE-627 rakwb eng 530 VZ Khadkikar, S B verfasserin aut Shape mixing as an approximation to shell $ model^{24} $Ne 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © the Indian Academy of Sciences 1974 Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. Band mixing energy spectrum E2 transition probabilities Ne Kulkarni, D R aut Pandya, S P aut Enthalten in Pramāna Springer India, 1973 2(1974), 5 vom: Mai, Seite 259-268 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:2 year:1974 number:5 month:05 pages:259-268 https://doi.org/10.1007/BF02847082 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4309 AR 2 1974 5 05 259-268 |
allfieldsSound |
10.1007/BF02847082 doi (DE-627)OLC2076001174 (DE-He213)BF02847082-p DE-627 ger DE-627 rakwb eng 530 VZ Khadkikar, S B verfasserin aut Shape mixing as an approximation to shell $ model^{24} $Ne 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © the Indian Academy of Sciences 1974 Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. Band mixing energy spectrum E2 transition probabilities Ne Kulkarni, D R aut Pandya, S P aut Enthalten in Pramāna Springer India, 1973 2(1974), 5 vom: Mai, Seite 259-268 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:2 year:1974 number:5 month:05 pages:259-268 https://doi.org/10.1007/BF02847082 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4309 AR 2 1974 5 05 259-268 |
language |
English |
source |
Enthalten in Pramāna 2(1974), 5 vom: Mai, Seite 259-268 volume:2 year:1974 number:5 month:05 pages:259-268 |
sourceStr |
Enthalten in Pramāna 2(1974), 5 vom: Mai, Seite 259-268 volume:2 year:1974 number:5 month:05 pages:259-268 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Band mixing energy spectrum E2 transition probabilities Ne |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Pramāna |
authorswithroles_txt_mv |
Khadkikar, S B @@aut@@ Kulkarni, D R @@aut@@ Pandya, S P @@aut@@ |
publishDateDaySort_date |
1974-05-01T00:00:00Z |
hierarchy_top_id |
129403342 |
dewey-sort |
3530 |
id |
OLC2076001174 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076001174</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402042234.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02847082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076001174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02847082-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khadkikar, S B</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shape mixing as an approximation to shell $ model^{24} $Ne</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the Indian Academy of Sciences 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band mixing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy spectrum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">E2 transition probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ne</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulkarni, D R</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pandya, S P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pramāna</subfield><subfield code="d">Springer India, 1973</subfield><subfield code="g">2(1974), 5 vom: Mai, Seite 259-268</subfield><subfield code="w">(DE-627)129403342</subfield><subfield code="w">(DE-600)186949-8</subfield><subfield code="w">(DE-576)014785102</subfield><subfield code="x">0304-4289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:5</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:259-268</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02847082</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">1974</subfield><subfield code="e">5</subfield><subfield code="c">05</subfield><subfield code="h">259-268</subfield></datafield></record></collection>
|
author |
Khadkikar, S B |
spellingShingle |
Khadkikar, S B ddc 530 misc Band mixing misc energy spectrum misc E2 transition probabilities misc Ne Shape mixing as an approximation to shell $ model^{24} $Ne |
authorStr |
Khadkikar, S B |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129403342 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0304-4289 |
topic_title |
530 VZ Shape mixing as an approximation to shell $ model^{24} $Ne Band mixing energy spectrum E2 transition probabilities Ne |
topic |
ddc 530 misc Band mixing misc energy spectrum misc E2 transition probabilities misc Ne |
topic_unstemmed |
ddc 530 misc Band mixing misc energy spectrum misc E2 transition probabilities misc Ne |
topic_browse |
ddc 530 misc Band mixing misc energy spectrum misc E2 transition probabilities misc Ne |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Pramāna |
hierarchy_parent_id |
129403342 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Pramāna |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 |
title |
Shape mixing as an approximation to shell $ model^{24} $Ne |
ctrlnum |
(DE-627)OLC2076001174 (DE-He213)BF02847082-p |
title_full |
Shape mixing as an approximation to shell $ model^{24} $Ne |
author_sort |
Khadkikar, S B |
journal |
Pramāna |
journalStr |
Pramāna |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1974 |
contenttype_str_mv |
txt |
container_start_page |
259 |
author_browse |
Khadkikar, S B Kulkarni, D R Pandya, S P |
container_volume |
2 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Khadkikar, S B |
doi_str_mv |
10.1007/BF02847082 |
dewey-full |
530 |
title_sort |
shape mixing as an approximation to shell $ model^{24} $ne |
title_auth |
Shape mixing as an approximation to shell $ model^{24} $Ne |
abstract |
Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. © the Indian Academy of Sciences 1974 |
abstractGer |
Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. © the Indian Academy of Sciences 1974 |
abstract_unstemmed |
Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states. © the Indian Academy of Sciences 1974 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4309 |
container_issue |
5 |
title_short |
Shape mixing as an approximation to shell $ model^{24} $Ne |
url |
https://doi.org/10.1007/BF02847082 |
remote_bool |
false |
author2 |
Kulkarni, D R Pandya, S P |
author2Str |
Kulkarni, D R Pandya, S P |
ppnlink |
129403342 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02847082 |
up_date |
2024-07-04T02:27:48.641Z |
_version_ |
1803613706536353792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076001174</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402042234.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02847082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076001174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02847082-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khadkikar, S B</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shape mixing as an approximation to shell $ model^{24} $Ne</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the Indian Academy of Sciences 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Band mixing calculations have been done $ for^{24} $Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few ‘intrinsic’ states.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band mixing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy spectrum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">E2 transition probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ne</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kulkarni, D R</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pandya, S P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pramāna</subfield><subfield code="d">Springer India, 1973</subfield><subfield code="g">2(1974), 5 vom: Mai, Seite 259-268</subfield><subfield code="w">(DE-627)129403342</subfield><subfield code="w">(DE-600)186949-8</subfield><subfield code="w">(DE-576)014785102</subfield><subfield code="x">0304-4289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:5</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:259-268</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02847082</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">1974</subfield><subfield code="e">5</subfield><subfield code="c">05</subfield><subfield code="h">259-268</subfield></datafield></record></collection>
|
score |
7.401101 |