Hamiltonian systems with indefinite kinetic energy
Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex...
Ausführliche Beschreibung
Autor*in: |
Rao, N N [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1986 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Indian Academy of Sciences 1986 |
---|
Übergeordnetes Werk: |
Enthalten in: Pramāna - Springer India, 1973, 27(1986), 4 vom: Okt., Seite 497-505 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:1986 ; number:4 ; month:10 ; pages:497-505 |
Links: |
---|
DOI / URN: |
10.1007/BF02846877 |
---|
Katalog-ID: |
OLC2076015272 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2076015272 | ||
003 | DE-627 | ||
005 | 20230402042401.0 | ||
007 | tu | ||
008 | 200820s1986 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02846877 |2 doi | |
035 | |a (DE-627)OLC2076015272 | ||
035 | |a (DE-He213)BF02846877-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Rao, N N |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hamiltonian systems with indefinite kinetic energy |
264 | 1 | |c 1986 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Indian Academy of Sciences 1986 | ||
520 | |a Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. | ||
650 | 4 | |a Hamiltonians | |
650 | 4 | |a indefinite kinetic energy | |
650 | 4 | |a complex nonlinear evolution equations | |
650 | 4 | |a complex K-dV equation | |
650 | 4 | |a Langmuir waves | |
650 | 4 | |a electromagnetic waves | |
700 | 1 | |a Buti, B |4 aut | |
700 | 1 | |a Khadkikar, S B |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Pramāna |d Springer India, 1973 |g 27(1986), 4 vom: Okt., Seite 497-505 |w (DE-627)129403342 |w (DE-600)186949-8 |w (DE-576)014785102 |x 0304-4289 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:1986 |g number:4 |g month:10 |g pages:497-505 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02846877 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_179 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 27 |j 1986 |e 4 |c 10 |h 497-505 |
author_variant |
n n r nn nnr b b bb s b k sb sbk |
---|---|
matchkey_str |
article:03044289:1986----::aitnassesihneiie |
hierarchy_sort_str |
1986 |
publishDate |
1986 |
allfields |
10.1007/BF02846877 doi (DE-627)OLC2076015272 (DE-He213)BF02846877-p DE-627 ger DE-627 rakwb eng 530 VZ Rao, N N verfasserin aut Hamiltonian systems with indefinite kinetic energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Indian Academy of Sciences 1986 Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves Buti, B aut Khadkikar, S B aut Enthalten in Pramāna Springer India, 1973 27(1986), 4 vom: Okt., Seite 497-505 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:27 year:1986 number:4 month:10 pages:497-505 https://doi.org/10.1007/BF02846877 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 AR 27 1986 4 10 497-505 |
spelling |
10.1007/BF02846877 doi (DE-627)OLC2076015272 (DE-He213)BF02846877-p DE-627 ger DE-627 rakwb eng 530 VZ Rao, N N verfasserin aut Hamiltonian systems with indefinite kinetic energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Indian Academy of Sciences 1986 Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves Buti, B aut Khadkikar, S B aut Enthalten in Pramāna Springer India, 1973 27(1986), 4 vom: Okt., Seite 497-505 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:27 year:1986 number:4 month:10 pages:497-505 https://doi.org/10.1007/BF02846877 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 AR 27 1986 4 10 497-505 |
allfields_unstemmed |
10.1007/BF02846877 doi (DE-627)OLC2076015272 (DE-He213)BF02846877-p DE-627 ger DE-627 rakwb eng 530 VZ Rao, N N verfasserin aut Hamiltonian systems with indefinite kinetic energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Indian Academy of Sciences 1986 Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves Buti, B aut Khadkikar, S B aut Enthalten in Pramāna Springer India, 1973 27(1986), 4 vom: Okt., Seite 497-505 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:27 year:1986 number:4 month:10 pages:497-505 https://doi.org/10.1007/BF02846877 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 AR 27 1986 4 10 497-505 |
allfieldsGer |
10.1007/BF02846877 doi (DE-627)OLC2076015272 (DE-He213)BF02846877-p DE-627 ger DE-627 rakwb eng 530 VZ Rao, N N verfasserin aut Hamiltonian systems with indefinite kinetic energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Indian Academy of Sciences 1986 Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves Buti, B aut Khadkikar, S B aut Enthalten in Pramāna Springer India, 1973 27(1986), 4 vom: Okt., Seite 497-505 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:27 year:1986 number:4 month:10 pages:497-505 https://doi.org/10.1007/BF02846877 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 AR 27 1986 4 10 497-505 |
allfieldsSound |
10.1007/BF02846877 doi (DE-627)OLC2076015272 (DE-He213)BF02846877-p DE-627 ger DE-627 rakwb eng 530 VZ Rao, N N verfasserin aut Hamiltonian systems with indefinite kinetic energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Indian Academy of Sciences 1986 Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves Buti, B aut Khadkikar, S B aut Enthalten in Pramāna Springer India, 1973 27(1986), 4 vom: Okt., Seite 497-505 (DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 0304-4289 nnns volume:27 year:1986 number:4 month:10 pages:497-505 https://doi.org/10.1007/BF02846877 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 AR 27 1986 4 10 497-505 |
language |
English |
source |
Enthalten in Pramāna 27(1986), 4 vom: Okt., Seite 497-505 volume:27 year:1986 number:4 month:10 pages:497-505 |
sourceStr |
Enthalten in Pramāna 27(1986), 4 vom: Okt., Seite 497-505 volume:27 year:1986 number:4 month:10 pages:497-505 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Pramāna |
authorswithroles_txt_mv |
Rao, N N @@aut@@ Buti, B @@aut@@ Khadkikar, S B @@aut@@ |
publishDateDaySort_date |
1986-10-01T00:00:00Z |
hierarchy_top_id |
129403342 |
dewey-sort |
3530 |
id |
OLC2076015272 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076015272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402042401.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1986 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02846877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076015272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02846877-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, N N</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian systems with indefinite kinetic energy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1986</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Academy of Sciences 1986</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indefinite kinetic energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex nonlinear evolution equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex K-dV equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langmuir waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic waves</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buti, B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khadkikar, S B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pramāna</subfield><subfield code="d">Springer India, 1973</subfield><subfield code="g">27(1986), 4 vom: Okt., Seite 497-505</subfield><subfield code="w">(DE-627)129403342</subfield><subfield code="w">(DE-600)186949-8</subfield><subfield code="w">(DE-576)014785102</subfield><subfield code="x">0304-4289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1986</subfield><subfield code="g">number:4</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:497-505</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02846877</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1986</subfield><subfield code="e">4</subfield><subfield code="c">10</subfield><subfield code="h">497-505</subfield></datafield></record></collection>
|
author |
Rao, N N |
spellingShingle |
Rao, N N ddc 530 misc Hamiltonians misc indefinite kinetic energy misc complex nonlinear evolution equations misc complex K-dV equation misc Langmuir waves misc electromagnetic waves Hamiltonian systems with indefinite kinetic energy |
authorStr |
Rao, N N |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129403342 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0304-4289 |
topic_title |
530 VZ Hamiltonian systems with indefinite kinetic energy Hamiltonians indefinite kinetic energy complex nonlinear evolution equations complex K-dV equation Langmuir waves electromagnetic waves |
topic |
ddc 530 misc Hamiltonians misc indefinite kinetic energy misc complex nonlinear evolution equations misc complex K-dV equation misc Langmuir waves misc electromagnetic waves |
topic_unstemmed |
ddc 530 misc Hamiltonians misc indefinite kinetic energy misc complex nonlinear evolution equations misc complex K-dV equation misc Langmuir waves misc electromagnetic waves |
topic_browse |
ddc 530 misc Hamiltonians misc indefinite kinetic energy misc complex nonlinear evolution equations misc complex K-dV equation misc Langmuir waves misc electromagnetic waves |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Pramāna |
hierarchy_parent_id |
129403342 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Pramāna |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129403342 (DE-600)186949-8 (DE-576)014785102 |
title |
Hamiltonian systems with indefinite kinetic energy |
ctrlnum |
(DE-627)OLC2076015272 (DE-He213)BF02846877-p |
title_full |
Hamiltonian systems with indefinite kinetic energy |
author_sort |
Rao, N N |
journal |
Pramāna |
journalStr |
Pramāna |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1986 |
contenttype_str_mv |
txt |
container_start_page |
497 |
author_browse |
Rao, N N Buti, B Khadkikar, S B |
container_volume |
27 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Rao, N N |
doi_str_mv |
10.1007/BF02846877 |
dewey-full |
530 |
title_sort |
hamiltonian systems with indefinite kinetic energy |
title_auth |
Hamiltonian systems with indefinite kinetic energy |
abstract |
Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. © Indian Academy of Sciences 1986 |
abstractGer |
Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. © Indian Academy of Sciences 1986 |
abstract_unstemmed |
Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples. © Indian Academy of Sciences 1986 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_40 GBV_ILN_70 GBV_ILN_179 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 |
container_issue |
4 |
title_short |
Hamiltonian systems with indefinite kinetic energy |
url |
https://doi.org/10.1007/BF02846877 |
remote_bool |
false |
author2 |
Buti, B Khadkikar, S B |
author2Str |
Buti, B Khadkikar, S B |
ppnlink |
129403342 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02846877 |
up_date |
2024-07-04T02:29:22.879Z |
_version_ |
1803613805352058880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076015272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230402042401.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1986 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02846877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076015272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02846877-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, N N</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian systems with indefinite kinetic energy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1986</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Academy of Sciences 1986</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Some interesting features of a class of two-dimensional Hamiltonians with indefinite kinetic energy are considered. It is shown that such Hamiltonians cannot be reduced, in general, to an equivalent dynamical Hamiltonian with positive definite kinetic energy quadratic in velocities. Complex nonlinear evolution equations like the K-dV, the MK-dV and the sine-Gordon equations possess such Hamiltonians. The case of complex K-dV equation has been considered in detail to demonstrate the generic features. The two-dimensional real systems obtained by analytic continuation to complex plane of one-dimensional dynamical systems are also discussed. The evolution equations for nonlinear, amplitude-modulated Langmuir waves as well as circularly polarized electromagnetic waves in plasmas, are considered as illustrative examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">indefinite kinetic energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex nonlinear evolution equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complex K-dV equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langmuir waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic waves</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buti, B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khadkikar, S B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pramāna</subfield><subfield code="d">Springer India, 1973</subfield><subfield code="g">27(1986), 4 vom: Okt., Seite 497-505</subfield><subfield code="w">(DE-627)129403342</subfield><subfield code="w">(DE-600)186949-8</subfield><subfield code="w">(DE-576)014785102</subfield><subfield code="x">0304-4289</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1986</subfield><subfield code="g">number:4</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:497-505</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02846877</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1986</subfield><subfield code="e">4</subfield><subfield code="c">10</subfield><subfield code="h">497-505</subfield></datafield></record></collection>
|
score |
7.4030848 |