Sapphire Whispering Gallery Thermometer
Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of...
Ausführliche Beschreibung
Autor*in: |
Strouse, G. F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermophysics - Springer US, 1980, 28(2007), 6 vom: 03. Okt., Seite 1812-1821 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2007 ; number:6 ; day:03 ; month:10 ; pages:1812-1821 |
Links: |
---|
DOI / URN: |
10.1007/s10765-007-0265-0 |
---|
Katalog-ID: |
OLC2076467955 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2076467955 | ||
003 | DE-627 | ||
005 | 20230503075820.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10765-007-0265-0 |2 doi | |
035 | |a (DE-627)OLC2076467955 | ||
035 | |a (DE-He213)s10765-007-0265-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Strouse, G. F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sapphire Whispering Gallery Thermometer |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. | ||
650 | 4 | |a Microwave oscillator | |
650 | 4 | |a Resonance thermometer | |
650 | 4 | |a Sapphire | |
650 | 4 | |a Sapphire thermometer | |
650 | 4 | |a Whispering gallery mode resonance | |
650 | 4 | |a Whispering gallery mode resonator (WGMR) | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermophysics |d Springer US, 1980 |g 28(2007), 6 vom: 03. Okt., Seite 1812-1821 |w (DE-627)130512540 |w (DE-600)764389-5 |w (DE-576)016085965 |x 0195-928X |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2007 |g number:6 |g day:03 |g month:10 |g pages:1812-1821 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10765-007-0265-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2007 |e 6 |b 03 |c 10 |h 1812-1821 |
author_variant |
g f s gf gfs |
---|---|
matchkey_str |
article:0195928X:2007----::apiehseigalrt |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10765-007-0265-0 doi (DE-627)OLC2076467955 (DE-He213)s10765-007-0265-0-p DE-627 ger DE-627 rakwb eng 530 VZ Strouse, G. F. verfasserin aut Sapphire Whispering Gallery Thermometer 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) Enthalten in International journal of thermophysics Springer US, 1980 28(2007), 6 vom: 03. Okt., Seite 1812-1821 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 https://doi.org/10.1007/s10765-007-0265-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 28 2007 6 03 10 1812-1821 |
spelling |
10.1007/s10765-007-0265-0 doi (DE-627)OLC2076467955 (DE-He213)s10765-007-0265-0-p DE-627 ger DE-627 rakwb eng 530 VZ Strouse, G. F. verfasserin aut Sapphire Whispering Gallery Thermometer 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) Enthalten in International journal of thermophysics Springer US, 1980 28(2007), 6 vom: 03. Okt., Seite 1812-1821 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 https://doi.org/10.1007/s10765-007-0265-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 28 2007 6 03 10 1812-1821 |
allfields_unstemmed |
10.1007/s10765-007-0265-0 doi (DE-627)OLC2076467955 (DE-He213)s10765-007-0265-0-p DE-627 ger DE-627 rakwb eng 530 VZ Strouse, G. F. verfasserin aut Sapphire Whispering Gallery Thermometer 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) Enthalten in International journal of thermophysics Springer US, 1980 28(2007), 6 vom: 03. Okt., Seite 1812-1821 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 https://doi.org/10.1007/s10765-007-0265-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 28 2007 6 03 10 1812-1821 |
allfieldsGer |
10.1007/s10765-007-0265-0 doi (DE-627)OLC2076467955 (DE-He213)s10765-007-0265-0-p DE-627 ger DE-627 rakwb eng 530 VZ Strouse, G. F. verfasserin aut Sapphire Whispering Gallery Thermometer 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) Enthalten in International journal of thermophysics Springer US, 1980 28(2007), 6 vom: 03. Okt., Seite 1812-1821 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 https://doi.org/10.1007/s10765-007-0265-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 28 2007 6 03 10 1812-1821 |
allfieldsSound |
10.1007/s10765-007-0265-0 doi (DE-627)OLC2076467955 (DE-He213)s10765-007-0265-0-p DE-627 ger DE-627 rakwb eng 530 VZ Strouse, G. F. verfasserin aut Sapphire Whispering Gallery Thermometer 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) Enthalten in International journal of thermophysics Springer US, 1980 28(2007), 6 vom: 03. Okt., Seite 1812-1821 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 https://doi.org/10.1007/s10765-007-0265-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 28 2007 6 03 10 1812-1821 |
language |
English |
source |
Enthalten in International journal of thermophysics 28(2007), 6 vom: 03. Okt., Seite 1812-1821 volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 |
sourceStr |
Enthalten in International journal of thermophysics 28(2007), 6 vom: 03. Okt., Seite 1812-1821 volume:28 year:2007 number:6 day:03 month:10 pages:1812-1821 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermophysics |
authorswithroles_txt_mv |
Strouse, G. F. @@aut@@ |
publishDateDaySort_date |
2007-10-03T00:00:00Z |
hierarchy_top_id |
130512540 |
dewey-sort |
3530 |
id |
OLC2076467955 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076467955</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503075820.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10765-007-0265-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076467955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10765-007-0265-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strouse, G. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sapphire Whispering Gallery Thermometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave oscillator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonance thermometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sapphire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sapphire thermometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whispering gallery mode resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whispering gallery mode resonator (WGMR)</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermophysics</subfield><subfield code="d">Springer US, 1980</subfield><subfield code="g">28(2007), 6 vom: 03. Okt., Seite 1812-1821</subfield><subfield code="w">(DE-627)130512540</subfield><subfield code="w">(DE-600)764389-5</subfield><subfield code="w">(DE-576)016085965</subfield><subfield code="x">0195-928X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:6</subfield><subfield code="g">day:03</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1812-1821</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10765-007-0265-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2007</subfield><subfield code="e">6</subfield><subfield code="b">03</subfield><subfield code="c">10</subfield><subfield code="h">1812-1821</subfield></datafield></record></collection>
|
author |
Strouse, G. F. |
spellingShingle |
Strouse, G. F. ddc 530 misc Microwave oscillator misc Resonance thermometer misc Sapphire misc Sapphire thermometer misc Whispering gallery mode resonance misc Whispering gallery mode resonator (WGMR) Sapphire Whispering Gallery Thermometer |
authorStr |
Strouse, G. F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130512540 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0195-928X |
topic_title |
530 VZ Sapphire Whispering Gallery Thermometer Microwave oscillator Resonance thermometer Sapphire Sapphire thermometer Whispering gallery mode resonance Whispering gallery mode resonator (WGMR) |
topic |
ddc 530 misc Microwave oscillator misc Resonance thermometer misc Sapphire misc Sapphire thermometer misc Whispering gallery mode resonance misc Whispering gallery mode resonator (WGMR) |
topic_unstemmed |
ddc 530 misc Microwave oscillator misc Resonance thermometer misc Sapphire misc Sapphire thermometer misc Whispering gallery mode resonance misc Whispering gallery mode resonator (WGMR) |
topic_browse |
ddc 530 misc Microwave oscillator misc Resonance thermometer misc Sapphire misc Sapphire thermometer misc Whispering gallery mode resonance misc Whispering gallery mode resonator (WGMR) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of thermophysics |
hierarchy_parent_id |
130512540 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of thermophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 |
title |
Sapphire Whispering Gallery Thermometer |
ctrlnum |
(DE-627)OLC2076467955 (DE-He213)s10765-007-0265-0-p |
title_full |
Sapphire Whispering Gallery Thermometer |
author_sort |
Strouse, G. F. |
journal |
International journal of thermophysics |
journalStr |
International journal of thermophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
1812 |
author_browse |
Strouse, G. F. |
container_volume |
28 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Strouse, G. F. |
doi_str_mv |
10.1007/s10765-007-0265-0 |
dewey-full |
530 |
title_sort |
sapphire whispering gallery thermometer |
title_auth |
Sapphire Whispering Gallery Thermometer |
abstract |
Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Sapphire Whispering Gallery Thermometer |
url |
https://doi.org/10.1007/s10765-007-0265-0 |
remote_bool |
false |
ppnlink |
130512540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10765-007-0265-0 |
up_date |
2024-07-04T03:25:29.634Z |
_version_ |
1803617335666278400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076467955</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503075820.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10765-007-0265-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076467955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10765-007-0265-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strouse, G. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sapphire Whispering Gallery Thermometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty (k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from −196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave oscillator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonance thermometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sapphire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sapphire thermometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whispering gallery mode resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whispering gallery mode resonator (WGMR)</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermophysics</subfield><subfield code="d">Springer US, 1980</subfield><subfield code="g">28(2007), 6 vom: 03. Okt., Seite 1812-1821</subfield><subfield code="w">(DE-627)130512540</subfield><subfield code="w">(DE-600)764389-5</subfield><subfield code="w">(DE-576)016085965</subfield><subfield code="x">0195-928X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:6</subfield><subfield code="g">day:03</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1812-1821</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10765-007-0265-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2007</subfield><subfield code="e">6</subfield><subfield code="b">03</subfield><subfield code="c">10</subfield><subfield code="h">1812-1821</subfield></datafield></record></collection>
|
score |
7.4010277 |