Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials
Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most...
Ausführliche Beschreibung
Autor*in: |
Baldan, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2008 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermophysics - Springer US, 1980, 30(2008), 1 vom: 02. Juli, Seite 325-333 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2008 ; number:1 ; day:02 ; month:07 ; pages:325-333 |
Links: |
---|
DOI / URN: |
10.1007/s10765-008-0476-z |
---|
Katalog-ID: |
OLC2076470131 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2076470131 | ||
003 | DE-627 | ||
005 | 20230503075919.0 | ||
007 | tu | ||
008 | 200820s2008 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10765-008-0476-z |2 doi | |
035 | |a (DE-627)OLC2076470131 | ||
035 | |a (DE-He213)s10765-008-0476-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Baldan, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2008 | ||
520 | |a Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. | ||
650 | 4 | |a Adiabatic calorimetry | |
650 | 4 | |a Benzene | |
650 | 4 | |a High-purity liquid reference material | |
650 | 4 | |a Purity determination | |
700 | 1 | |a Bosma, R. |4 aut | |
700 | 1 | |a Peruzzi, A. |4 aut | |
700 | 1 | |a van der Veen, A. M. H. |4 aut | |
700 | 1 | |a Shimizu, Y. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermophysics |d Springer US, 1980 |g 30(2008), 1 vom: 02. Juli, Seite 325-333 |w (DE-627)130512540 |w (DE-600)764389-5 |w (DE-576)016085965 |x 0195-928X |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2008 |g number:1 |g day:02 |g month:07 |g pages:325-333 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10765-008-0476-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 30 |j 2008 |e 1 |b 02 |c 07 |h 325-333 |
author_variant |
a b ab r b rb a p ap d v a m h v dvamh dvamhv y s ys |
---|---|
matchkey_str |
article:0195928X:2008----::daaiclrmtysuprtteetfctoohgprtl |
hierarchy_sort_str |
2008 |
publishDate |
2008 |
allfields |
10.1007/s10765-008-0476-z doi (DE-627)OLC2076470131 (DE-He213)s10765-008-0476-z-p DE-627 ger DE-627 rakwb eng 530 VZ Baldan, A. verfasserin aut Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination Bosma, R. aut Peruzzi, A. aut van der Veen, A. M. H. aut Shimizu, Y. aut Enthalten in International journal of thermophysics Springer US, 1980 30(2008), 1 vom: 02. Juli, Seite 325-333 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:30 year:2008 number:1 day:02 month:07 pages:325-333 https://doi.org/10.1007/s10765-008-0476-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 30 2008 1 02 07 325-333 |
spelling |
10.1007/s10765-008-0476-z doi (DE-627)OLC2076470131 (DE-He213)s10765-008-0476-z-p DE-627 ger DE-627 rakwb eng 530 VZ Baldan, A. verfasserin aut Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination Bosma, R. aut Peruzzi, A. aut van der Veen, A. M. H. aut Shimizu, Y. aut Enthalten in International journal of thermophysics Springer US, 1980 30(2008), 1 vom: 02. Juli, Seite 325-333 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:30 year:2008 number:1 day:02 month:07 pages:325-333 https://doi.org/10.1007/s10765-008-0476-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 30 2008 1 02 07 325-333 |
allfields_unstemmed |
10.1007/s10765-008-0476-z doi (DE-627)OLC2076470131 (DE-He213)s10765-008-0476-z-p DE-627 ger DE-627 rakwb eng 530 VZ Baldan, A. verfasserin aut Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination Bosma, R. aut Peruzzi, A. aut van der Veen, A. M. H. aut Shimizu, Y. aut Enthalten in International journal of thermophysics Springer US, 1980 30(2008), 1 vom: 02. Juli, Seite 325-333 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:30 year:2008 number:1 day:02 month:07 pages:325-333 https://doi.org/10.1007/s10765-008-0476-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 30 2008 1 02 07 325-333 |
allfieldsGer |
10.1007/s10765-008-0476-z doi (DE-627)OLC2076470131 (DE-He213)s10765-008-0476-z-p DE-627 ger DE-627 rakwb eng 530 VZ Baldan, A. verfasserin aut Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination Bosma, R. aut Peruzzi, A. aut van der Veen, A. M. H. aut Shimizu, Y. aut Enthalten in International journal of thermophysics Springer US, 1980 30(2008), 1 vom: 02. Juli, Seite 325-333 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:30 year:2008 number:1 day:02 month:07 pages:325-333 https://doi.org/10.1007/s10765-008-0476-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 30 2008 1 02 07 325-333 |
allfieldsSound |
10.1007/s10765-008-0476-z doi (DE-627)OLC2076470131 (DE-He213)s10765-008-0476-z-p DE-627 ger DE-627 rakwb eng 530 VZ Baldan, A. verfasserin aut Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination Bosma, R. aut Peruzzi, A. aut van der Veen, A. M. H. aut Shimizu, Y. aut Enthalten in International journal of thermophysics Springer US, 1980 30(2008), 1 vom: 02. Juli, Seite 325-333 (DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 0195-928X nnns volume:30 year:2008 number:1 day:02 month:07 pages:325-333 https://doi.org/10.1007/s10765-008-0476-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 AR 30 2008 1 02 07 325-333 |
language |
English |
source |
Enthalten in International journal of thermophysics 30(2008), 1 vom: 02. Juli, Seite 325-333 volume:30 year:2008 number:1 day:02 month:07 pages:325-333 |
sourceStr |
Enthalten in International journal of thermophysics 30(2008), 1 vom: 02. Juli, Seite 325-333 volume:30 year:2008 number:1 day:02 month:07 pages:325-333 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermophysics |
authorswithroles_txt_mv |
Baldan, A. @@aut@@ Bosma, R. @@aut@@ Peruzzi, A. @@aut@@ van der Veen, A. M. H. @@aut@@ Shimizu, Y. @@aut@@ |
publishDateDaySort_date |
2008-07-02T00:00:00Z |
hierarchy_top_id |
130512540 |
dewey-sort |
3530 |
id |
OLC2076470131 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076470131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503075919.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10765-008-0476-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076470131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10765-008-0476-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baldan, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adiabatic calorimetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Benzene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-purity liquid reference material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Purity determination</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosma, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peruzzi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Veen, A. M. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shimizu, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermophysics</subfield><subfield code="d">Springer US, 1980</subfield><subfield code="g">30(2008), 1 vom: 02. Juli, Seite 325-333</subfield><subfield code="w">(DE-627)130512540</subfield><subfield code="w">(DE-600)764389-5</subfield><subfield code="w">(DE-576)016085965</subfield><subfield code="x">0195-928X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:325-333</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10765-008-0476-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2008</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">07</subfield><subfield code="h">325-333</subfield></datafield></record></collection>
|
author |
Baldan, A. |
spellingShingle |
Baldan, A. ddc 530 misc Adiabatic calorimetry misc Benzene misc High-purity liquid reference material misc Purity determination Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials |
authorStr |
Baldan, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130512540 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0195-928X |
topic_title |
530 VZ Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials Adiabatic calorimetry Benzene High-purity liquid reference material Purity determination |
topic |
ddc 530 misc Adiabatic calorimetry misc Benzene misc High-purity liquid reference material misc Purity determination |
topic_unstemmed |
ddc 530 misc Adiabatic calorimetry misc Benzene misc High-purity liquid reference material misc Purity determination |
topic_browse |
ddc 530 misc Adiabatic calorimetry misc Benzene misc High-purity liquid reference material misc Purity determination |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of thermophysics |
hierarchy_parent_id |
130512540 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of thermophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130512540 (DE-600)764389-5 (DE-576)016085965 |
title |
Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials |
ctrlnum |
(DE-627)OLC2076470131 (DE-He213)s10765-008-0476-z-p |
title_full |
Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials |
author_sort |
Baldan, A. |
journal |
International journal of thermophysics |
journalStr |
International journal of thermophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
325 |
author_browse |
Baldan, A. Bosma, R. Peruzzi, A. van der Veen, A. M. H. Shimizu, Y. |
container_volume |
30 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Baldan, A. |
doi_str_mv |
10.1007/s10765-008-0476-z |
dewey-full |
530 |
title_sort |
adiabatic calorimetry as support to the certification of high-purity liquid reference materials |
title_auth |
Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials |
abstract |
Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. © Springer Science+Business Media, LLC 2008 |
abstractGer |
Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. © Springer Science+Business Media, LLC 2008 |
abstract_unstemmed |
Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated. © Springer Science+Business Media, LLC 2008 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_62 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials |
url |
https://doi.org/10.1007/s10765-008-0476-z |
remote_bool |
false |
author2 |
Bosma, R. Peruzzi, A. van der Veen, A. M. H. Shimizu, Y. |
author2Str |
Bosma, R. Peruzzi, A. van der Veen, A. M. H. Shimizu, Y. |
ppnlink |
130512540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10765-008-0476-z |
up_date |
2024-07-04T03:25:49.604Z |
_version_ |
1803617356607389696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2076470131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503075919.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10765-008-0476-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2076470131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10765-008-0476-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baldan, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · $ mol^{−1} $ without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · $ mol^{−1} $ was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adiabatic calorimetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Benzene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-purity liquid reference material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Purity determination</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bosma, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peruzzi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Veen, A. M. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shimizu, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermophysics</subfield><subfield code="d">Springer US, 1980</subfield><subfield code="g">30(2008), 1 vom: 02. Juli, Seite 325-333</subfield><subfield code="w">(DE-627)130512540</subfield><subfield code="w">(DE-600)764389-5</subfield><subfield code="w">(DE-576)016085965</subfield><subfield code="x">0195-928X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:325-333</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10765-008-0476-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2008</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">07</subfield><subfield code="h">325-333</subfield></datafield></record></collection>
|
score |
7.401513 |