On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression
Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General...
Ausführliche Beschreibung
Autor*in: |
Nakayama, Shummin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Optimization letters - Springer Berlin Heidelberg, 2007, 15(2021), 8 vom: 03. März, Seite 2831-2860 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2021 ; number:8 ; day:03 ; month:03 ; pages:2831-2860 |
Links: |
---|
DOI / URN: |
10.1007/s11590-021-01716-1 |
---|
Katalog-ID: |
OLC2077017899 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077017899 | ||
003 | DE-627 | ||
005 | 20230505134156.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11590-021-01716-1 |2 doi | |
035 | |a (DE-627)OLC2077017899 | ||
035 | |a (DE-He213)s11590-021-01716-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Nakayama, Shummin |e verfasserin |0 (orcid)0000-0001-7780-8348 |4 aut | |
245 | 1 | 0 | |a On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 | ||
520 | |a Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. | ||
650 | 4 | |a Proximal gradient method | |
650 | 4 | |a DC algorithms | |
650 | 4 | |a Proximal alternating linearized minimization | |
650 | 4 | |a D-stationary points | |
650 | 4 | |a Critical points | |
700 | 1 | |a Gotoh, Jun-ya |0 (orcid)0000-0002-0097-7298 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optimization letters |d Springer Berlin Heidelberg, 2007 |g 15(2021), 8 vom: 03. März, Seite 2831-2860 |w (DE-627)527562920 |w (DE-600)2274663-8 |w (DE-576)272713724 |x 1862-4472 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2021 |g number:8 |g day:03 |g month:03 |g pages:2831-2860 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11590-021-01716-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 15 |j 2021 |e 8 |b 03 |c 03 |h 2831-2860 |
author_variant |
s n sn j y g jyg |
---|---|
matchkey_str |
article:18624472:2021----::nhsproiyfgsodainnmohocne |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11590-021-01716-1 doi (DE-627)OLC2077017899 (DE-He213)s11590-021-01716-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Nakayama, Shummin verfasserin (orcid)0000-0001-7780-8348 aut On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points Gotoh, Jun-ya (orcid)0000-0002-0097-7298 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 15(2021), 8 vom: 03. März, Seite 2831-2860 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 https://doi.org/10.1007/s11590-021-01716-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 15 2021 8 03 03 2831-2860 |
spelling |
10.1007/s11590-021-01716-1 doi (DE-627)OLC2077017899 (DE-He213)s11590-021-01716-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Nakayama, Shummin verfasserin (orcid)0000-0001-7780-8348 aut On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points Gotoh, Jun-ya (orcid)0000-0002-0097-7298 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 15(2021), 8 vom: 03. März, Seite 2831-2860 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 https://doi.org/10.1007/s11590-021-01716-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 15 2021 8 03 03 2831-2860 |
allfields_unstemmed |
10.1007/s11590-021-01716-1 doi (DE-627)OLC2077017899 (DE-He213)s11590-021-01716-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Nakayama, Shummin verfasserin (orcid)0000-0001-7780-8348 aut On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points Gotoh, Jun-ya (orcid)0000-0002-0097-7298 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 15(2021), 8 vom: 03. März, Seite 2831-2860 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 https://doi.org/10.1007/s11590-021-01716-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 15 2021 8 03 03 2831-2860 |
allfieldsGer |
10.1007/s11590-021-01716-1 doi (DE-627)OLC2077017899 (DE-He213)s11590-021-01716-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Nakayama, Shummin verfasserin (orcid)0000-0001-7780-8348 aut On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points Gotoh, Jun-ya (orcid)0000-0002-0097-7298 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 15(2021), 8 vom: 03. März, Seite 2831-2860 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 https://doi.org/10.1007/s11590-021-01716-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 15 2021 8 03 03 2831-2860 |
allfieldsSound |
10.1007/s11590-021-01716-1 doi (DE-627)OLC2077017899 (DE-He213)s11590-021-01716-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Nakayama, Shummin verfasserin (orcid)0000-0001-7780-8348 aut On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points Gotoh, Jun-ya (orcid)0000-0002-0097-7298 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 15(2021), 8 vom: 03. März, Seite 2831-2860 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 https://doi.org/10.1007/s11590-021-01716-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 15 2021 8 03 03 2831-2860 |
language |
English |
source |
Enthalten in Optimization letters 15(2021), 8 vom: 03. März, Seite 2831-2860 volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 |
sourceStr |
Enthalten in Optimization letters 15(2021), 8 vom: 03. März, Seite 2831-2860 volume:15 year:2021 number:8 day:03 month:03 pages:2831-2860 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Optimization letters |
authorswithroles_txt_mv |
Nakayama, Shummin @@aut@@ Gotoh, Jun-ya @@aut@@ |
publishDateDaySort_date |
2021-03-03T00:00:00Z |
hierarchy_top_id |
527562920 |
dewey-sort |
3510 |
id |
OLC2077017899 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077017899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505134156.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11590-021-01716-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077017899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11590-021-01716-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakayama, Shummin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7780-8348</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proximal gradient method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proximal alternating linearized minimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D-stationary points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical points</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gotoh, Jun-ya</subfield><subfield code="0">(orcid)0000-0002-0097-7298</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization letters</subfield><subfield code="d">Springer Berlin Heidelberg, 2007</subfield><subfield code="g">15(2021), 8 vom: 03. März, Seite 2831-2860</subfield><subfield code="w">(DE-627)527562920</subfield><subfield code="w">(DE-600)2274663-8</subfield><subfield code="w">(DE-576)272713724</subfield><subfield code="x">1862-4472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2831-2860</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11590-021-01716-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield><subfield code="h">2831-2860</subfield></datafield></record></collection>
|
author |
Nakayama, Shummin |
spellingShingle |
Nakayama, Shummin ddc 510 misc Proximal gradient method misc DC algorithms misc Proximal alternating linearized minimization misc D-stationary points misc Critical points On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression |
authorStr |
Nakayama, Shummin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)527562920 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1862-4472 |
topic_title |
510 VZ On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression Proximal gradient method DC algorithms Proximal alternating linearized minimization D-stationary points Critical points |
topic |
ddc 510 misc Proximal gradient method misc DC algorithms misc Proximal alternating linearized minimization misc D-stationary points misc Critical points |
topic_unstemmed |
ddc 510 misc Proximal gradient method misc DC algorithms misc Proximal alternating linearized minimization misc D-stationary points misc Critical points |
topic_browse |
ddc 510 misc Proximal gradient method misc DC algorithms misc Proximal alternating linearized minimization misc D-stationary points misc Critical points |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optimization letters |
hierarchy_parent_id |
527562920 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Optimization letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 |
title |
On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression |
ctrlnum |
(DE-627)OLC2077017899 (DE-He213)s11590-021-01716-1-p |
title_full |
On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression |
author_sort |
Nakayama, Shummin |
journal |
Optimization letters |
journalStr |
Optimization letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2831 |
author_browse |
Nakayama, Shummin Gotoh, Jun-ya |
container_volume |
15 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Nakayama, Shummin |
doi_str_mv |
10.1007/s11590-021-01716-1 |
normlink |
(ORCID)0000-0001-7780-8348 (ORCID)0000-0002-0097-7298 |
normlink_prefix_str_mv |
(orcid)0000-0001-7780-8348 (orcid)0000-0002-0097-7298 |
dewey-full |
510 |
title_sort |
on the superiority of pgms to pdcas in nonsmooth nonconvex sparse regression |
title_auth |
On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression |
abstract |
Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
abstractGer |
Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
abstract_unstemmed |
Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 |
container_issue |
8 |
title_short |
On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression |
url |
https://doi.org/10.1007/s11590-021-01716-1 |
remote_bool |
false |
author2 |
Gotoh, Jun-ya |
author2Str |
Gotoh, Jun-ya |
ppnlink |
527562920 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11590-021-01716-1 |
up_date |
2024-07-04T04:11:03.807Z |
_version_ |
1803620202649223168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077017899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505134156.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11590-021-01716-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077017899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11590-021-01716-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakayama, Shummin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7780-8348</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper conducts a comparative study of proximal gradient methods (PGMs) and proximal DC algorithms (PDCAs) for sparse regression problems which can be cast as Difference-of-two-Convex-functions (DC) optimization problems. It has been shown that for DC optimization problems, both General Iterative Shrinkage and Thresholding algorithm (GIST), a modified version of PGM, and PDCA converge to critical points. Recently some enhanced versions of PDCAs are shown to converge to d-stationary points, which are stronger necessary condition for local optimality than critical points. In this paper we claim that without any modification, PGMs converge to a d-stationary point not only to DC problems but also to more general nonsmooth nonconvex problems under some technical assumptions. While the convergence to d-stationary points is known for the case where the step size is small enough, the finding of this paper is valid also for extended versions such as GIST and its alternating optimization version, which is to be developed in this paper. Numerical results show that among several algorithms in the two categories, modified versions of PGM perform best among those not only in solution quality but also in computation time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proximal gradient method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DC algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proximal alternating linearized minimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D-stationary points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical points</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gotoh, Jun-ya</subfield><subfield code="0">(orcid)0000-0002-0097-7298</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization letters</subfield><subfield code="d">Springer Berlin Heidelberg, 2007</subfield><subfield code="g">15(2021), 8 vom: 03. März, Seite 2831-2860</subfield><subfield code="w">(DE-627)527562920</subfield><subfield code="w">(DE-600)2274663-8</subfield><subfield code="w">(DE-576)272713724</subfield><subfield code="x">1862-4472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2831-2860</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11590-021-01716-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield><subfield code="h">2831-2860</subfield></datafield></record></collection>
|
score |
7.403078 |