Eulerian polynomials via the Weyl algebra action
Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook num...
Ausführliche Beschreibung
Autor*in: |
Agapito, Jose [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of algebraic combinatorics - Springer US, 1992, 54(2020), 2 vom: 02. Dez., Seite 457-473 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2020 ; number:2 ; day:02 ; month:12 ; pages:457-473 |
Links: |
---|
DOI / URN: |
10.1007/s10801-020-00997-6 |
---|
Katalog-ID: |
OLC2077131209 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077131209 | ||
003 | DE-627 | ||
005 | 20230505140040.0 | ||
007 | tu | ||
008 | 221220s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10801-020-00997-6 |2 doi | |
035 | |a (DE-627)OLC2077131209 | ||
035 | |a (DE-He213)s10801-020-00997-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Agapito, Jose |e verfasserin |4 aut | |
245 | 1 | 0 | |a Eulerian polynomials via the Weyl algebra action |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2020 | ||
520 | |a Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. | ||
650 | 4 | |a Eulerian polynomials | |
650 | 4 | |a Weyl algebra | |
650 | 4 | |a Rook numbers | |
650 | 4 | |a Permutation statistics | |
650 | 4 | |a Formal power series | |
700 | 1 | |a Petrullo, Pasquale |0 (orcid)0000-0002-8155-7876 |4 aut | |
700 | 1 | |a Senato, Domenico |4 aut | |
700 | 1 | |a Torres, Maria M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of algebraic combinatorics |d Springer US, 1992 |g 54(2020), 2 vom: 02. Dez., Seite 457-473 |w (DE-627)131180770 |w (DE-600)1143271-8 |w (DE-576)033043701 |x 0925-9899 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2020 |g number:2 |g day:02 |g month:12 |g pages:457-473 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10801-020-00997-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 54 |j 2020 |e 2 |b 02 |c 12 |h 457-473 |
author_variant |
j a ja p p pp d s ds m m t mm mmt |
---|---|
matchkey_str |
article:09259899:2020----::ueinoyoilvahwya |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10801-020-00997-6 doi (DE-627)OLC2077131209 (DE-He213)s10801-020-00997-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Agapito, Jose verfasserin aut Eulerian polynomials via the Weyl algebra action 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series Petrullo, Pasquale (orcid)0000-0002-8155-7876 aut Senato, Domenico aut Torres, Maria M. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 54(2020), 2 vom: 02. Dez., Seite 457-473 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:54 year:2020 number:2 day:02 month:12 pages:457-473 https://doi.org/10.1007/s10801-020-00997-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 54 2020 2 02 12 457-473 |
spelling |
10.1007/s10801-020-00997-6 doi (DE-627)OLC2077131209 (DE-He213)s10801-020-00997-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Agapito, Jose verfasserin aut Eulerian polynomials via the Weyl algebra action 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series Petrullo, Pasquale (orcid)0000-0002-8155-7876 aut Senato, Domenico aut Torres, Maria M. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 54(2020), 2 vom: 02. Dez., Seite 457-473 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:54 year:2020 number:2 day:02 month:12 pages:457-473 https://doi.org/10.1007/s10801-020-00997-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 54 2020 2 02 12 457-473 |
allfields_unstemmed |
10.1007/s10801-020-00997-6 doi (DE-627)OLC2077131209 (DE-He213)s10801-020-00997-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Agapito, Jose verfasserin aut Eulerian polynomials via the Weyl algebra action 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series Petrullo, Pasquale (orcid)0000-0002-8155-7876 aut Senato, Domenico aut Torres, Maria M. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 54(2020), 2 vom: 02. Dez., Seite 457-473 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:54 year:2020 number:2 day:02 month:12 pages:457-473 https://doi.org/10.1007/s10801-020-00997-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 54 2020 2 02 12 457-473 |
allfieldsGer |
10.1007/s10801-020-00997-6 doi (DE-627)OLC2077131209 (DE-He213)s10801-020-00997-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Agapito, Jose verfasserin aut Eulerian polynomials via the Weyl algebra action 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series Petrullo, Pasquale (orcid)0000-0002-8155-7876 aut Senato, Domenico aut Torres, Maria M. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 54(2020), 2 vom: 02. Dez., Seite 457-473 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:54 year:2020 number:2 day:02 month:12 pages:457-473 https://doi.org/10.1007/s10801-020-00997-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 54 2020 2 02 12 457-473 |
allfieldsSound |
10.1007/s10801-020-00997-6 doi (DE-627)OLC2077131209 (DE-He213)s10801-020-00997-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Agapito, Jose verfasserin aut Eulerian polynomials via the Weyl algebra action 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series Petrullo, Pasquale (orcid)0000-0002-8155-7876 aut Senato, Domenico aut Torres, Maria M. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 54(2020), 2 vom: 02. Dez., Seite 457-473 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:54 year:2020 number:2 day:02 month:12 pages:457-473 https://doi.org/10.1007/s10801-020-00997-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 54 2020 2 02 12 457-473 |
language |
English |
source |
Enthalten in Journal of algebraic combinatorics 54(2020), 2 vom: 02. Dez., Seite 457-473 volume:54 year:2020 number:2 day:02 month:12 pages:457-473 |
sourceStr |
Enthalten in Journal of algebraic combinatorics 54(2020), 2 vom: 02. Dez., Seite 457-473 volume:54 year:2020 number:2 day:02 month:12 pages:457-473 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of algebraic combinatorics |
authorswithroles_txt_mv |
Agapito, Jose @@aut@@ Petrullo, Pasquale @@aut@@ Senato, Domenico @@aut@@ Torres, Maria M. @@aut@@ |
publishDateDaySort_date |
2020-12-02T00:00:00Z |
hierarchy_top_id |
131180770 |
dewey-sort |
3510 |
id |
OLC2077131209 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077131209</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505140040.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-020-00997-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077131209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-020-00997-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agapito, Jose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eulerian polynomials via the Weyl algebra action</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eulerian polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rook numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal power series</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrullo, Pasquale</subfield><subfield code="0">(orcid)0000-0002-8155-7876</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Senato, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torres, Maria M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">54(2020), 2 vom: 02. Dez., Seite 457-473</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:457-473</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-020-00997-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">457-473</subfield></datafield></record></collection>
|
author |
Agapito, Jose |
spellingShingle |
Agapito, Jose ddc 510 ssgn 17,1 misc Eulerian polynomials misc Weyl algebra misc Rook numbers misc Permutation statistics misc Formal power series Eulerian polynomials via the Weyl algebra action |
authorStr |
Agapito, Jose |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131180770 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-9899 |
topic_title |
510 VZ 17,1 ssgn Eulerian polynomials via the Weyl algebra action Eulerian polynomials Weyl algebra Rook numbers Permutation statistics Formal power series |
topic |
ddc 510 ssgn 17,1 misc Eulerian polynomials misc Weyl algebra misc Rook numbers misc Permutation statistics misc Formal power series |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Eulerian polynomials misc Weyl algebra misc Rook numbers misc Permutation statistics misc Formal power series |
topic_browse |
ddc 510 ssgn 17,1 misc Eulerian polynomials misc Weyl algebra misc Rook numbers misc Permutation statistics misc Formal power series |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of algebraic combinatorics |
hierarchy_parent_id |
131180770 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of algebraic combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 |
title |
Eulerian polynomials via the Weyl algebra action |
ctrlnum |
(DE-627)OLC2077131209 (DE-He213)s10801-020-00997-6-p |
title_full |
Eulerian polynomials via the Weyl algebra action |
author_sort |
Agapito, Jose |
journal |
Journal of algebraic combinatorics |
journalStr |
Journal of algebraic combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
457 |
author_browse |
Agapito, Jose Petrullo, Pasquale Senato, Domenico Torres, Maria M. |
container_volume |
54 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Agapito, Jose |
doi_str_mv |
10.1007/s10801-020-00997-6 |
normlink |
(ORCID)0000-0002-8155-7876 |
normlink_prefix_str_mv |
(orcid)0000-0002-8155-7876 |
dewey-full |
510 |
title_sort |
eulerian polynomials via the weyl algebra action |
title_auth |
Eulerian polynomials via the Weyl algebra action |
abstract |
Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. © The Author(s) 2020 |
abstractGer |
Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. © The Author(s) 2020 |
abstract_unstemmed |
Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided. © The Author(s) 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
2 |
title_short |
Eulerian polynomials via the Weyl algebra action |
url |
https://doi.org/10.1007/s10801-020-00997-6 |
remote_bool |
false |
author2 |
Petrullo, Pasquale Senato, Domenico Torres, Maria M. |
author2Str |
Petrullo, Pasquale Senato, Domenico Torres, Maria M. |
ppnlink |
131180770 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10801-020-00997-6 |
up_date |
2024-07-03T13:56:56.341Z |
_version_ |
1803566465776877568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077131209</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505140040.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-020-00997-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077131209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-020-00997-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agapito, Jose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eulerian polynomials via the Weyl algebra action</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Through the action of the Weyl algebra on the geometric series, we establish a generalization of the Worpitzky identity and new recursive formulae for a family of polynomials including the classical Eulerian polynomials. We obtain an extension of the Dobiński formula for the sum of rook numbers of a Young diagram by replacing the geometric series with the exponential series. Also, by replacing the derivative operator with the q-derivative operator, we extend these results to the q-analogue setting including the q-hit numbers. Finally, a combinatorial description and a proof of the symmetry of a family of polynomials introduced by one of the authors are provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eulerian polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rook numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal power series</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrullo, Pasquale</subfield><subfield code="0">(orcid)0000-0002-8155-7876</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Senato, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torres, Maria M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">54(2020), 2 vom: 02. Dez., Seite 457-473</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:457-473</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-020-00997-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">457-473</subfield></datafield></record></collection>
|
score |
7.4020357 |