Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images
Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This...
Ausführliche Beschreibung
Autor*in: |
Cai, Weiwei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 |
---|---|
Übergeordnetes Werk: |
volume:80 ; year:2021 ; number:21-23 ; day:24 ; month:07 ; pages:32131-32147 |
Links: |
---|
DOI / URN: |
10.1007/s11042-021-11203-5 |
---|
Katalog-ID: |
OLC2077131756 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077131756 | ||
003 | DE-627 | ||
005 | 20230517134318.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-021-11203-5 |2 doi | |
035 | |a (DE-627)OLC2077131756 | ||
035 | |a (DE-He213)s11042-021-11203-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Cai, Weiwei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. | ||
650 | 4 | |a Threshold convolution | |
650 | 4 | |a Residual-capsule networks | |
650 | 4 | |a Wheat plantation rows | |
650 | 4 | |a Image segmentation | |
700 | 1 | |a Wei, Zhanguo |0 (orcid)0000-0001-9736-502X |4 aut | |
700 | 1 | |a Song, Yaping |4 aut | |
700 | 1 | |a Li, Meilin |4 aut | |
700 | 1 | |a Yang, Xuechun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:80 |g year:2021 |g number:21-23 |g day:24 |g month:07 |g pages:32131-32147 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-021-11203-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
951 | |a AR | ||
952 | |d 80 |j 2021 |e 21-23 |b 24 |c 07 |h 32131-32147 |
author_variant |
w c wc z w zw y s ys m l ml x y xy |
---|---|
matchkey_str |
article:13807501:2021----::eiulaslntokwttrsodovltofremnainfha |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11042-021-11203-5 doi (DE-627)OLC2077131756 (DE-He213)s11042-021-11203-5-p DE-627 ger DE-627 rakwb eng 070 004 VZ Cai, Weiwei verfasserin aut Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation Wei, Zhanguo (orcid)0000-0001-9736-502X aut Song, Yaping aut Li, Meilin aut Yang, Xuechun aut Enthalten in Multimedia tools and applications Springer US, 1995 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 https://doi.org/10.1007/s11042-021-11203-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW SSG-OLC-PHA SSG-OLC-DE-84 AR 80 2021 21-23 24 07 32131-32147 |
spelling |
10.1007/s11042-021-11203-5 doi (DE-627)OLC2077131756 (DE-He213)s11042-021-11203-5-p DE-627 ger DE-627 rakwb eng 070 004 VZ Cai, Weiwei verfasserin aut Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation Wei, Zhanguo (orcid)0000-0001-9736-502X aut Song, Yaping aut Li, Meilin aut Yang, Xuechun aut Enthalten in Multimedia tools and applications Springer US, 1995 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 https://doi.org/10.1007/s11042-021-11203-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW SSG-OLC-PHA SSG-OLC-DE-84 AR 80 2021 21-23 24 07 32131-32147 |
allfields_unstemmed |
10.1007/s11042-021-11203-5 doi (DE-627)OLC2077131756 (DE-He213)s11042-021-11203-5-p DE-627 ger DE-627 rakwb eng 070 004 VZ Cai, Weiwei verfasserin aut Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation Wei, Zhanguo (orcid)0000-0001-9736-502X aut Song, Yaping aut Li, Meilin aut Yang, Xuechun aut Enthalten in Multimedia tools and applications Springer US, 1995 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 https://doi.org/10.1007/s11042-021-11203-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW SSG-OLC-PHA SSG-OLC-DE-84 AR 80 2021 21-23 24 07 32131-32147 |
allfieldsGer |
10.1007/s11042-021-11203-5 doi (DE-627)OLC2077131756 (DE-He213)s11042-021-11203-5-p DE-627 ger DE-627 rakwb eng 070 004 VZ Cai, Weiwei verfasserin aut Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation Wei, Zhanguo (orcid)0000-0001-9736-502X aut Song, Yaping aut Li, Meilin aut Yang, Xuechun aut Enthalten in Multimedia tools and applications Springer US, 1995 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 https://doi.org/10.1007/s11042-021-11203-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW SSG-OLC-PHA SSG-OLC-DE-84 AR 80 2021 21-23 24 07 32131-32147 |
allfieldsSound |
10.1007/s11042-021-11203-5 doi (DE-627)OLC2077131756 (DE-He213)s11042-021-11203-5-p DE-627 ger DE-627 rakwb eng 070 004 VZ Cai, Weiwei verfasserin aut Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation Wei, Zhanguo (orcid)0000-0001-9736-502X aut Song, Yaping aut Li, Meilin aut Yang, Xuechun aut Enthalten in Multimedia tools and applications Springer US, 1995 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 https://doi.org/10.1007/s11042-021-11203-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW SSG-OLC-PHA SSG-OLC-DE-84 AR 80 2021 21-23 24 07 32131-32147 |
language |
English |
source |
Enthalten in Multimedia tools and applications 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 |
sourceStr |
Enthalten in Multimedia tools and applications 80(2021), 21-23 vom: 24. Juli, Seite 32131-32147 volume:80 year:2021 number:21-23 day:24 month:07 pages:32131-32147 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Cai, Weiwei @@aut@@ Wei, Zhanguo @@aut@@ Song, Yaping @@aut@@ Li, Meilin @@aut@@ Yang, Xuechun @@aut@@ |
publishDateDaySort_date |
2021-07-24T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2077131756 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077131756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517134318.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-021-11203-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077131756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-021-11203-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Weiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Threshold convolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual-capsule networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheat plantation rows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image segmentation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Zhanguo</subfield><subfield code="0">(orcid)0000-0001-9736-502X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yaping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Meilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xuechun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">80(2021), 21-23 vom: 24. Juli, Seite 32131-32147</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:21-23</subfield><subfield code="g">day:24</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:32131-32147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-021-11203-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2021</subfield><subfield code="e">21-23</subfield><subfield code="b">24</subfield><subfield code="c">07</subfield><subfield code="h">32131-32147</subfield></datafield></record></collection>
|
author |
Cai, Weiwei |
spellingShingle |
Cai, Weiwei ddc 070 misc Threshold convolution misc Residual-capsule networks misc Wheat plantation rows misc Image segmentation Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images |
authorStr |
Cai, Weiwei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images Threshold convolution Residual-capsule networks Wheat plantation rows Image segmentation |
topic |
ddc 070 misc Threshold convolution misc Residual-capsule networks misc Wheat plantation rows misc Image segmentation |
topic_unstemmed |
ddc 070 misc Threshold convolution misc Residual-capsule networks misc Wheat plantation rows misc Image segmentation |
topic_browse |
ddc 070 misc Threshold convolution misc Residual-capsule networks misc Wheat plantation rows misc Image segmentation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images |
ctrlnum |
(DE-627)OLC2077131756 (DE-He213)s11042-021-11203-5-p |
title_full |
Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images |
author_sort |
Cai, Weiwei |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
32131 |
author_browse |
Cai, Weiwei Wei, Zhanguo Song, Yaping Li, Meilin Yang, Xuechun |
container_volume |
80 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Cai, Weiwei |
doi_str_mv |
10.1007/s11042-021-11203-5 |
normlink |
(ORCID)0000-0001-9736-502X |
normlink_prefix_str_mv |
(orcid)0000-0001-9736-502X |
dewey-full |
070 004 |
title_sort |
residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in uav images |
title_auth |
Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images |
abstract |
Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW SSG-OLC-PHA SSG-OLC-DE-84 |
container_issue |
21-23 |
title_short |
Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images |
url |
https://doi.org/10.1007/s11042-021-11203-5 |
remote_bool |
false |
author2 |
Wei, Zhanguo Song, Yaping Li, Meilin Yang, Xuechun |
author2Str |
Wei, Zhanguo Song, Yaping Li, Meilin Yang, Xuechun |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-021-11203-5 |
up_date |
2024-07-03T13:57:06.050Z |
_version_ |
1803566475958550528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077131756</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517134318.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-021-11203-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077131756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-021-11203-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Weiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Residual-capsule networks with threshold convolution for segmentation of wheat plantation rows in UAV images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The early growth process of wheat is vulnerable to various factors, and poor growth leads to vacancies in the planting row. Therefore, the wheat images captured by unmanned aerial vehicles (UAV) are essential for monitoring the growth of wheat and preventing diseases and insect pests. This paper uses wheat images captured by UAV as a dataset, and propose a novel residual-capsule network with threshold convolution (RCTC) for segmentation of wheat plantation rows. The network is achieved by replacing the AveragePooling of the improved ResNet34 with Capsule. Since the capsule network represents the features by vectors, it can explain the direction of features and the relative positions between features. Therefore, deeper feature information can be extracted. In addition, to reduce redundant features and enhance effective features, a new threshold convolution is also proposed. Experiments on the wheat field dataset show that our proposed algorithm can effectively segment the wheat plantation rows images collected by UAV, and is superior to some existing well-known algorithms, and can provide scientific support and reference for the decision-making process of smart agriculture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Threshold convolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual-capsule networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheat plantation rows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image segmentation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Zhanguo</subfield><subfield code="0">(orcid)0000-0001-9736-502X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yaping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Meilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xuechun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">80(2021), 21-23 vom: 24. Juli, Seite 32131-32147</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:21-23</subfield><subfield code="g">day:24</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:32131-32147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-021-11203-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2021</subfield><subfield code="e">21-23</subfield><subfield code="b">24</subfield><subfield code="c">07</subfield><subfield code="h">32131-32147</subfield></datafield></record></collection>
|
score |
7.401039 |