Efficient continual cohesive subgraph search in large temporal graphs
Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and...
Ausführliche Beschreibung
Autor*in: |
Li, Yuan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Cohesive subgraph search (CSS) |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: World wide web - Springer US, 1998, 24(2021), 5 vom: 15. Juli, Seite 1483-1509 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2021 ; number:5 ; day:15 ; month:07 ; pages:1483-1509 |
Links: |
---|
DOI / URN: |
10.1007/s11280-021-00917-z |
---|
Katalog-ID: |
OLC2077223111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077223111 | ||
003 | DE-627 | ||
005 | 20230505141811.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11280-021-00917-z |2 doi | |
035 | |a (DE-627)OLC2077223111 | ||
035 | |a (DE-He213)s11280-021-00917-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 24,1 |2 ssgn | ||
084 | |a 54.84$jWebmanagement |2 bkl | ||
084 | |a 06.74$jInformationssysteme |2 bkl | ||
100 | 1 | |a Li, Yuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient continual cohesive subgraph search in large temporal graphs |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a ( ,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. | ||
650 | 4 | |a ( | |
650 | 4 | |a )-continual | |
650 | 4 | |a -core model | |
650 | 4 | |a Cohesive subgraph search (CSS) | |
650 | 4 | |a Exact and approximate algorithms | |
650 | 4 | |a Large temporal graphs | |
700 | 1 | |a Liu, Jinsheng |4 aut | |
700 | 1 | |a Zhao, Huiqun |4 aut | |
700 | 1 | |a Sun, Jing |4 aut | |
700 | 1 | |a Zhao, Yuhai |0 (orcid)0000-0002-1080-0859 |4 aut | |
700 | 1 | |a Wang, Guoren |4 aut | |
773 | 0 | 8 | |i Enthalten in |t World wide web |d Springer US, 1998 |g 24(2021), 5 vom: 15. Juli, Seite 1483-1509 |w (DE-627)301184976 |w (DE-600)1485096-5 |w (DE-576)9301184974 |x 1386-145X |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2021 |g number:5 |g day:15 |g month:07 |g pages:1483-1509 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11280-021-00917-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-BBI | ||
936 | b | k | |a 54.84$jWebmanagement |q VZ |0 475288947 |0 (DE-625)475288947 |
936 | b | k | |a 06.74$jInformationssysteme |q VZ |0 106415212 |0 (DE-625)106415212 |
951 | |a AR | ||
952 | |d 24 |j 2021 |e 5 |b 15 |c 07 |h 1483-1509 |
author_variant |
y l yl j l jl h z hz j s js y z yz g w gw |
---|---|
matchkey_str |
article:1386145X:2021----::fiincniuloeieugaherhna |
hierarchy_sort_str |
2021 |
bklnumber |
54.84$jWebmanagement 06.74$jInformationssysteme |
publishDate |
2021 |
allfields |
10.1007/s11280-021-00917-z doi (DE-627)OLC2077223111 (DE-He213)s11280-021-00917-z-p DE-627 ger DE-627 rakwb eng 004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl Li, Yuan verfasserin aut Efficient continual cohesive subgraph search in large temporal graphs 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. ( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs Liu, Jinsheng aut Zhao, Huiqun aut Sun, Jing aut Zhao, Yuhai (orcid)0000-0002-1080-0859 aut Wang, Guoren aut Enthalten in World wide web Springer US, 1998 24(2021), 5 vom: 15. Juli, Seite 1483-1509 (DE-627)301184976 (DE-600)1485096-5 (DE-576)9301184974 1386-145X nnns volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 https://doi.org/10.1007/s11280-021-00917-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OPC-BBI 54.84$jWebmanagement VZ 475288947 (DE-625)475288947 06.74$jInformationssysteme VZ 106415212 (DE-625)106415212 AR 24 2021 5 15 07 1483-1509 |
spelling |
10.1007/s11280-021-00917-z doi (DE-627)OLC2077223111 (DE-He213)s11280-021-00917-z-p DE-627 ger DE-627 rakwb eng 004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl Li, Yuan verfasserin aut Efficient continual cohesive subgraph search in large temporal graphs 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. ( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs Liu, Jinsheng aut Zhao, Huiqun aut Sun, Jing aut Zhao, Yuhai (orcid)0000-0002-1080-0859 aut Wang, Guoren aut Enthalten in World wide web Springer US, 1998 24(2021), 5 vom: 15. Juli, Seite 1483-1509 (DE-627)301184976 (DE-600)1485096-5 (DE-576)9301184974 1386-145X nnns volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 https://doi.org/10.1007/s11280-021-00917-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OPC-BBI 54.84$jWebmanagement VZ 475288947 (DE-625)475288947 06.74$jInformationssysteme VZ 106415212 (DE-625)106415212 AR 24 2021 5 15 07 1483-1509 |
allfields_unstemmed |
10.1007/s11280-021-00917-z doi (DE-627)OLC2077223111 (DE-He213)s11280-021-00917-z-p DE-627 ger DE-627 rakwb eng 004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl Li, Yuan verfasserin aut Efficient continual cohesive subgraph search in large temporal graphs 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. ( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs Liu, Jinsheng aut Zhao, Huiqun aut Sun, Jing aut Zhao, Yuhai (orcid)0000-0002-1080-0859 aut Wang, Guoren aut Enthalten in World wide web Springer US, 1998 24(2021), 5 vom: 15. Juli, Seite 1483-1509 (DE-627)301184976 (DE-600)1485096-5 (DE-576)9301184974 1386-145X nnns volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 https://doi.org/10.1007/s11280-021-00917-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OPC-BBI 54.84$jWebmanagement VZ 475288947 (DE-625)475288947 06.74$jInformationssysteme VZ 106415212 (DE-625)106415212 AR 24 2021 5 15 07 1483-1509 |
allfieldsGer |
10.1007/s11280-021-00917-z doi (DE-627)OLC2077223111 (DE-He213)s11280-021-00917-z-p DE-627 ger DE-627 rakwb eng 004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl Li, Yuan verfasserin aut Efficient continual cohesive subgraph search in large temporal graphs 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. ( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs Liu, Jinsheng aut Zhao, Huiqun aut Sun, Jing aut Zhao, Yuhai (orcid)0000-0002-1080-0859 aut Wang, Guoren aut Enthalten in World wide web Springer US, 1998 24(2021), 5 vom: 15. Juli, Seite 1483-1509 (DE-627)301184976 (DE-600)1485096-5 (DE-576)9301184974 1386-145X nnns volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 https://doi.org/10.1007/s11280-021-00917-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OPC-BBI 54.84$jWebmanagement VZ 475288947 (DE-625)475288947 06.74$jInformationssysteme VZ 106415212 (DE-625)106415212 AR 24 2021 5 15 07 1483-1509 |
allfieldsSound |
10.1007/s11280-021-00917-z doi (DE-627)OLC2077223111 (DE-He213)s11280-021-00917-z-p DE-627 ger DE-627 rakwb eng 004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl Li, Yuan verfasserin aut Efficient continual cohesive subgraph search in large temporal graphs 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. ( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs Liu, Jinsheng aut Zhao, Huiqun aut Sun, Jing aut Zhao, Yuhai (orcid)0000-0002-1080-0859 aut Wang, Guoren aut Enthalten in World wide web Springer US, 1998 24(2021), 5 vom: 15. Juli, Seite 1483-1509 (DE-627)301184976 (DE-600)1485096-5 (DE-576)9301184974 1386-145X nnns volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 https://doi.org/10.1007/s11280-021-00917-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OPC-BBI 54.84$jWebmanagement VZ 475288947 (DE-625)475288947 06.74$jInformationssysteme VZ 106415212 (DE-625)106415212 AR 24 2021 5 15 07 1483-1509 |
language |
English |
source |
Enthalten in World wide web 24(2021), 5 vom: 15. Juli, Seite 1483-1509 volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 |
sourceStr |
Enthalten in World wide web 24(2021), 5 vom: 15. Juli, Seite 1483-1509 volume:24 year:2021 number:5 day:15 month:07 pages:1483-1509 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
World wide web |
authorswithroles_txt_mv |
Li, Yuan @@aut@@ Liu, Jinsheng @@aut@@ Zhao, Huiqun @@aut@@ Sun, Jing @@aut@@ Zhao, Yuhai @@aut@@ Wang, Guoren @@aut@@ |
publishDateDaySort_date |
2021-07-15T00:00:00Z |
hierarchy_top_id |
301184976 |
dewey-sort |
14 |
id |
OLC2077223111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077223111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505141811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11280-021-00917-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077223111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11280-021-00917-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.84$jWebmanagement</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">06.74$jInformationssysteme</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient continual cohesive subgraph search in large temporal graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">)-continual</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-core model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive subgraph search (CSS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact and approximate algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large temporal graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinsheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Huiqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yuhai</subfield><subfield code="0">(orcid)0000-0002-1080-0859</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guoren</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">World wide web</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">24(2021), 5 vom: 15. Juli, Seite 1483-1509</subfield><subfield code="w">(DE-627)301184976</subfield><subfield code="w">(DE-600)1485096-5</subfield><subfield code="w">(DE-576)9301184974</subfield><subfield code="x">1386-145X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1483-1509</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11280-021-00917-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.84$jWebmanagement</subfield><subfield code="q">VZ</subfield><subfield code="0">475288947</subfield><subfield code="0">(DE-625)475288947</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">06.74$jInformationssysteme</subfield><subfield code="q">VZ</subfield><subfield code="0">106415212</subfield><subfield code="0">(DE-625)106415212</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield><subfield code="h">1483-1509</subfield></datafield></record></collection>
|
author |
Li, Yuan |
spellingShingle |
Li, Yuan ddc 004 ssgn 24,1 bkl 54.84$jWebmanagement bkl 06.74$jInformationssysteme misc ( misc )-continual misc -core model misc Cohesive subgraph search (CSS) misc Exact and approximate algorithms misc Large temporal graphs Efficient continual cohesive subgraph search in large temporal graphs |
authorStr |
Li, Yuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301184976 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-145X |
topic_title |
004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl Efficient continual cohesive subgraph search in large temporal graphs ( )-continual -core model Cohesive subgraph search (CSS) Exact and approximate algorithms Large temporal graphs |
topic |
ddc 004 ssgn 24,1 bkl 54.84$jWebmanagement bkl 06.74$jInformationssysteme misc ( misc )-continual misc -core model misc Cohesive subgraph search (CSS) misc Exact and approximate algorithms misc Large temporal graphs |
topic_unstemmed |
ddc 004 ssgn 24,1 bkl 54.84$jWebmanagement bkl 06.74$jInformationssysteme misc ( misc )-continual misc -core model misc Cohesive subgraph search (CSS) misc Exact and approximate algorithms misc Large temporal graphs |
topic_browse |
ddc 004 ssgn 24,1 bkl 54.84$jWebmanagement bkl 06.74$jInformationssysteme misc ( misc )-continual misc -core model misc Cohesive subgraph search (CSS) misc Exact and approximate algorithms misc Large temporal graphs |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
World wide web |
hierarchy_parent_id |
301184976 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
World wide web |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301184976 (DE-600)1485096-5 (DE-576)9301184974 |
title |
Efficient continual cohesive subgraph search in large temporal graphs |
ctrlnum |
(DE-627)OLC2077223111 (DE-He213)s11280-021-00917-z-p |
title_full |
Efficient continual cohesive subgraph search in large temporal graphs |
author_sort |
Li, Yuan |
journal |
World wide web |
journalStr |
World wide web |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1483 |
author_browse |
Li, Yuan Liu, Jinsheng Zhao, Huiqun Sun, Jing Zhao, Yuhai Wang, Guoren |
container_volume |
24 |
class |
004 VZ 24,1 ssgn 54.84$jWebmanagement bkl 06.74$jInformationssysteme bkl |
format_se |
Aufsätze |
author-letter |
Li, Yuan |
doi_str_mv |
10.1007/s11280-021-00917-z |
normlink |
(ORCID)0000-0002-1080-0859 475288947 106415212 |
normlink_prefix_str_mv |
(orcid)0000-0002-1080-0859 475288947 (DE-625)475288947 106415212 (DE-625)106415212 |
dewey-full |
004 |
title_sort |
efficient continual cohesive subgraph search in large temporal graphs |
title_auth |
Efficient continual cohesive subgraph search in large temporal graphs |
abstract |
Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OPC-BBI |
container_issue |
5 |
title_short |
Efficient continual cohesive subgraph search in large temporal graphs |
url |
https://doi.org/10.1007/s11280-021-00917-z |
remote_bool |
false |
author2 |
Liu, Jinsheng Zhao, Huiqun Sun, Jing Zhao, Yuhai Wang, Guoren |
author2Str |
Liu, Jinsheng Zhao, Huiqun Sun, Jing Zhao, Yuhai Wang, Guoren |
ppnlink |
301184976 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11280-021-00917-z |
up_date |
2024-07-03T14:25:44.830Z |
_version_ |
1803568278226862080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077223111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505141811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11280-021-00917-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077223111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11280-021-00917-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.84$jWebmanagement</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">06.74$jInformationssysteme</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient continual cohesive subgraph search in large temporal graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Temporal graphs are equipped with entities and the relationships between entities associated with time stamps. Cohesive subgraph mining (CSM) is a fundamental task in temporal graph analysis, which has gathered great research interests. It benefits from reflecting the dynamism of graphs and has many real-world applications. Yet, most existing work focus on the cohesive subgraph detection (CSD) problem, which identifies all the defined subgraphs in the entire temporal graphs. When graph size becoming too large, it is impractical. In this paper, we are the first to concern about the cohesive subgraph search (CSS) problem in large temporal graphs. In specific, given a query vertex, we are seeking the continual densely connected subgraph including the query vertex. To this end, (1) we model the cohesive subgraph in temporal graphs as a (𝜃,τ)-continual k-core and prove its NP-hardness; (2) we develop two exact algorithms based on different vertex enumeration strategies, called Exact-VD and Exact-VE, respectively. Exact-VD uses depth-first search to find the target subgraphs in a top-down way by gradually deleting vertices from the current subgraph; while Exact-VE starts from the query vertex and continuously expands the ranked vertices in the candidate group until reaching the target subgraphs. Meanwhile, several elegant pruning rules are designed to reduce the search space; (3) to further speed up, we propose an efficient approximate local search method, called Approx-LS, which greedily expands the current subgraph guided by the developed heuristic functions until identifying the results. Comprehensive experiments on four real-life datasets verify the efficiency and effectiveness of our proposed approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">)-continual</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-core model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive subgraph search (CSS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact and approximate algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large temporal graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinsheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Huiqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yuhai</subfield><subfield code="0">(orcid)0000-0002-1080-0859</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guoren</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">World wide web</subfield><subfield code="d">Springer US, 1998</subfield><subfield code="g">24(2021), 5 vom: 15. Juli, Seite 1483-1509</subfield><subfield code="w">(DE-627)301184976</subfield><subfield code="w">(DE-600)1485096-5</subfield><subfield code="w">(DE-576)9301184974</subfield><subfield code="x">1386-145X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1483-1509</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11280-021-00917-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.84$jWebmanagement</subfield><subfield code="q">VZ</subfield><subfield code="0">475288947</subfield><subfield code="0">(DE-625)475288947</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">06.74$jInformationssysteme</subfield><subfield code="q">VZ</subfield><subfield code="0">106415212</subfield><subfield code="0">(DE-625)106415212</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield><subfield code="h">1483-1509</subfield></datafield></record></collection>
|
score |
7.400773 |