A Phase Transition for Large Values of Bifurcating Autoregressive Models
Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an aut...
Ausführliche Beschreibung
Autor*in: |
Bansaye, Vincent [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of theoretical probability - Springer US, 1988, 34(2020), 4 vom: 28. Aug., Seite 2081-2116 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2020 ; number:4 ; day:28 ; month:08 ; pages:2081-2116 |
Links: |
---|
DOI / URN: |
10.1007/s10959-020-01033-w |
---|
Katalog-ID: |
OLC2077229586 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077229586 | ||
003 | DE-627 | ||
005 | 20230505141934.0 | ||
007 | tu | ||
008 | 221220s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10959-020-01033-w |2 doi | |
035 | |a (DE-627)OLC2077229586 | ||
035 | |a (DE-He213)s10959-020-01033-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Bansaye, Vincent |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Phase Transition for Large Values of Bifurcating Autoregressive Models |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. | ||
650 | 4 | |a Branching process | |
650 | 4 | |a Autoregressive process | |
650 | 4 | |a Random environment | |
650 | 4 | |a Large deviations | |
700 | 1 | |a Bitseki Penda, S. Valère |0 (orcid)0000-0001-8728-1586 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of theoretical probability |d Springer US, 1988 |g 34(2020), 4 vom: 28. Aug., Seite 2081-2116 |w (DE-627)129930903 |w (DE-600)357043-5 |w (DE-576)018191886 |x 0894-9840 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2020 |g number:4 |g day:28 |g month:08 |g pages:2081-2116 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10959-020-01033-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_4027 | ||
951 | |a AR | ||
952 | |d 34 |j 2020 |e 4 |b 28 |c 08 |h 2081-2116 |
author_variant |
v b vb p s v b psv psvb |
---|---|
matchkey_str |
article:08949840:2020----::paerniinolreausfiuctna |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10959-020-01033-w doi (DE-627)OLC2077229586 (DE-He213)s10959-020-01033-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bansaye, Vincent verfasserin aut A Phase Transition for Large Values of Bifurcating Autoregressive Models 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. Branching process Autoregressive process Random environment Large deviations Bitseki Penda, S. Valère (orcid)0000-0001-8728-1586 aut Enthalten in Journal of theoretical probability Springer US, 1988 34(2020), 4 vom: 28. Aug., Seite 2081-2116 (DE-627)129930903 (DE-600)357043-5 (DE-576)018191886 0894-9840 nnns volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 https://doi.org/10.1007/s10959-020-01033-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4027 AR 34 2020 4 28 08 2081-2116 |
spelling |
10.1007/s10959-020-01033-w doi (DE-627)OLC2077229586 (DE-He213)s10959-020-01033-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bansaye, Vincent verfasserin aut A Phase Transition for Large Values of Bifurcating Autoregressive Models 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. Branching process Autoregressive process Random environment Large deviations Bitseki Penda, S. Valère (orcid)0000-0001-8728-1586 aut Enthalten in Journal of theoretical probability Springer US, 1988 34(2020), 4 vom: 28. Aug., Seite 2081-2116 (DE-627)129930903 (DE-600)357043-5 (DE-576)018191886 0894-9840 nnns volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 https://doi.org/10.1007/s10959-020-01033-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4027 AR 34 2020 4 28 08 2081-2116 |
allfields_unstemmed |
10.1007/s10959-020-01033-w doi (DE-627)OLC2077229586 (DE-He213)s10959-020-01033-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bansaye, Vincent verfasserin aut A Phase Transition for Large Values of Bifurcating Autoregressive Models 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. Branching process Autoregressive process Random environment Large deviations Bitseki Penda, S. Valère (orcid)0000-0001-8728-1586 aut Enthalten in Journal of theoretical probability Springer US, 1988 34(2020), 4 vom: 28. Aug., Seite 2081-2116 (DE-627)129930903 (DE-600)357043-5 (DE-576)018191886 0894-9840 nnns volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 https://doi.org/10.1007/s10959-020-01033-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4027 AR 34 2020 4 28 08 2081-2116 |
allfieldsGer |
10.1007/s10959-020-01033-w doi (DE-627)OLC2077229586 (DE-He213)s10959-020-01033-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bansaye, Vincent verfasserin aut A Phase Transition for Large Values of Bifurcating Autoregressive Models 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. Branching process Autoregressive process Random environment Large deviations Bitseki Penda, S. Valère (orcid)0000-0001-8728-1586 aut Enthalten in Journal of theoretical probability Springer US, 1988 34(2020), 4 vom: 28. Aug., Seite 2081-2116 (DE-627)129930903 (DE-600)357043-5 (DE-576)018191886 0894-9840 nnns volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 https://doi.org/10.1007/s10959-020-01033-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4027 AR 34 2020 4 28 08 2081-2116 |
allfieldsSound |
10.1007/s10959-020-01033-w doi (DE-627)OLC2077229586 (DE-He213)s10959-020-01033-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Bansaye, Vincent verfasserin aut A Phase Transition for Large Values of Bifurcating Autoregressive Models 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. Branching process Autoregressive process Random environment Large deviations Bitseki Penda, S. Valère (orcid)0000-0001-8728-1586 aut Enthalten in Journal of theoretical probability Springer US, 1988 34(2020), 4 vom: 28. Aug., Seite 2081-2116 (DE-627)129930903 (DE-600)357043-5 (DE-576)018191886 0894-9840 nnns volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 https://doi.org/10.1007/s10959-020-01033-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4027 AR 34 2020 4 28 08 2081-2116 |
language |
English |
source |
Enthalten in Journal of theoretical probability 34(2020), 4 vom: 28. Aug., Seite 2081-2116 volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 |
sourceStr |
Enthalten in Journal of theoretical probability 34(2020), 4 vom: 28. Aug., Seite 2081-2116 volume:34 year:2020 number:4 day:28 month:08 pages:2081-2116 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Branching process Autoregressive process Random environment Large deviations |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of theoretical probability |
authorswithroles_txt_mv |
Bansaye, Vincent @@aut@@ Bitseki Penda, S. Valère @@aut@@ |
publishDateDaySort_date |
2020-08-28T00:00:00Z |
hierarchy_top_id |
129930903 |
dewey-sort |
3510 |
id |
OLC2077229586 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077229586</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505141934.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10959-020-01033-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077229586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10959-020-01033-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bansaye, Vincent</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Phase Transition for Large Values of Bifurcating Autoregressive Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Branching process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large deviations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bitseki Penda, S. Valère</subfield><subfield code="0">(orcid)0000-0001-8728-1586</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of theoretical probability</subfield><subfield code="d">Springer US, 1988</subfield><subfield code="g">34(2020), 4 vom: 28. Aug., Seite 2081-2116</subfield><subfield code="w">(DE-627)129930903</subfield><subfield code="w">(DE-600)357043-5</subfield><subfield code="w">(DE-576)018191886</subfield><subfield code="x">0894-9840</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2081-2116</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10959-020-01033-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield><subfield code="h">2081-2116</subfield></datafield></record></collection>
|
author |
Bansaye, Vincent |
spellingShingle |
Bansaye, Vincent ddc 510 ssgn 17,1 misc Branching process misc Autoregressive process misc Random environment misc Large deviations A Phase Transition for Large Values of Bifurcating Autoregressive Models |
authorStr |
Bansaye, Vincent |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129930903 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0894-9840 |
topic_title |
510 VZ 17,1 ssgn A Phase Transition for Large Values of Bifurcating Autoregressive Models Branching process Autoregressive process Random environment Large deviations |
topic |
ddc 510 ssgn 17,1 misc Branching process misc Autoregressive process misc Random environment misc Large deviations |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Branching process misc Autoregressive process misc Random environment misc Large deviations |
topic_browse |
ddc 510 ssgn 17,1 misc Branching process misc Autoregressive process misc Random environment misc Large deviations |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of theoretical probability |
hierarchy_parent_id |
129930903 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of theoretical probability |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129930903 (DE-600)357043-5 (DE-576)018191886 |
title |
A Phase Transition for Large Values of Bifurcating Autoregressive Models |
ctrlnum |
(DE-627)OLC2077229586 (DE-He213)s10959-020-01033-w-p |
title_full |
A Phase Transition for Large Values of Bifurcating Autoregressive Models |
author_sort |
Bansaye, Vincent |
journal |
Journal of theoretical probability |
journalStr |
Journal of theoretical probability |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
2081 |
author_browse |
Bansaye, Vincent Bitseki Penda, S. Valère |
container_volume |
34 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Bansaye, Vincent |
doi_str_mv |
10.1007/s10959-020-01033-w |
normlink |
(ORCID)0000-0001-8728-1586 |
normlink_prefix_str_mv |
(orcid)0000-0001-8728-1586 |
dewey-full |
510 |
title_sort |
a phase transition for large values of bifurcating autoregressive models |
title_auth |
A Phase Transition for Large Values of Bifurcating Autoregressive Models |
abstract |
Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4027 |
container_issue |
4 |
title_short |
A Phase Transition for Large Values of Bifurcating Autoregressive Models |
url |
https://doi.org/10.1007/s10959-020-01033-w |
remote_bool |
false |
author2 |
Bitseki Penda, S. Valère |
author2Str |
Bitseki Penda, S. Valère |
ppnlink |
129930903 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10959-020-01033-w |
up_date |
2024-07-03T14:27:51.407Z |
_version_ |
1803568410950369280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077229586</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505141934.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10959-020-01033-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077229586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10959-020-01033-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bansaye, Vincent</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Phase Transition for Large Values of Bifurcating Autoregressive Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$. The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Branching process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large deviations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bitseki Penda, S. Valère</subfield><subfield code="0">(orcid)0000-0001-8728-1586</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of theoretical probability</subfield><subfield code="d">Springer US, 1988</subfield><subfield code="g">34(2020), 4 vom: 28. Aug., Seite 2081-2116</subfield><subfield code="w">(DE-627)129930903</subfield><subfield code="w">(DE-600)357043-5</subfield><subfield code="w">(DE-576)018191886</subfield><subfield code="x">0894-9840</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2081-2116</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10959-020-01033-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield><subfield code="h">2081-2116</subfield></datafield></record></collection>
|
score |
7.401597 |