Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering
Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibilit...
Ausführliche Beschreibung
Autor*in: |
Huang, Shih-Gu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 33(2021), 20 vom: 18. Sept., Seite 13693-13704 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2021 ; number:20 ; day:18 ; month:09 ; pages:13693-13704 |
Links: |
---|
DOI / URN: |
10.1007/s00521-021-06006-6 |
---|
Katalog-ID: |
OLC2077265515 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077265515 | ||
003 | DE-627 | ||
005 | 20230514121737.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-021-06006-6 |2 doi | |
035 | |a (DE-627)OLC2077265515 | ||
035 | |a (DE-He213)s00521-021-06006-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Huang, Shih-Gu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 | ||
520 | |a Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). | ||
650 | 4 | |a Graph convolutional neural network | |
650 | 4 | |a Signals on surfaces | |
650 | 4 | |a Chebyshev polynomial | |
650 | 4 | |a Hermite polynomial | |
650 | 4 | |a Laguerre polynomial | |
650 | 4 | |a Laplace–Beltrami operator. | |
700 | 1 | |a Chung, Moo K. |4 aut | |
700 | 1 | |a Qiu, Anqi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 33(2021), 20 vom: 18. Sept., Seite 13693-13704 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2021 |g number:20 |g day:18 |g month:09 |g pages:13693-13704 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-021-06006-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 33 |j 2021 |e 20 |b 18 |c 09 |h 13693-13704 |
author_variant |
s g h sgh m k c mk mkc a q aq |
---|---|
matchkey_str |
article:09410643:2021----::eiiigovltoanuantoknrpsihoyoilprxmtosfal |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00521-021-06006-6 doi (DE-627)OLC2077265515 (DE-He213)s00521-021-06006-6-p DE-627 ger DE-627 rakwb eng 004 VZ Huang, Shih-Gu verfasserin aut Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator. Chung, Moo K. aut Qiu, Anqi aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 18. Sept., Seite 13693-13704 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 https://doi.org/10.1007/s00521-021-06006-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 18 09 13693-13704 |
spelling |
10.1007/s00521-021-06006-6 doi (DE-627)OLC2077265515 (DE-He213)s00521-021-06006-6-p DE-627 ger DE-627 rakwb eng 004 VZ Huang, Shih-Gu verfasserin aut Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator. Chung, Moo K. aut Qiu, Anqi aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 18. Sept., Seite 13693-13704 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 https://doi.org/10.1007/s00521-021-06006-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 18 09 13693-13704 |
allfields_unstemmed |
10.1007/s00521-021-06006-6 doi (DE-627)OLC2077265515 (DE-He213)s00521-021-06006-6-p DE-627 ger DE-627 rakwb eng 004 VZ Huang, Shih-Gu verfasserin aut Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator. Chung, Moo K. aut Qiu, Anqi aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 18. Sept., Seite 13693-13704 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 https://doi.org/10.1007/s00521-021-06006-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 18 09 13693-13704 |
allfieldsGer |
10.1007/s00521-021-06006-6 doi (DE-627)OLC2077265515 (DE-He213)s00521-021-06006-6-p DE-627 ger DE-627 rakwb eng 004 VZ Huang, Shih-Gu verfasserin aut Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator. Chung, Moo K. aut Qiu, Anqi aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 18. Sept., Seite 13693-13704 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 https://doi.org/10.1007/s00521-021-06006-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 18 09 13693-13704 |
allfieldsSound |
10.1007/s00521-021-06006-6 doi (DE-627)OLC2077265515 (DE-He213)s00521-021-06006-6-p DE-627 ger DE-627 rakwb eng 004 VZ Huang, Shih-Gu verfasserin aut Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator. Chung, Moo K. aut Qiu, Anqi aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 18. Sept., Seite 13693-13704 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 https://doi.org/10.1007/s00521-021-06006-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 18 09 13693-13704 |
language |
English |
source |
Enthalten in Neural computing & applications 33(2021), 20 vom: 18. Sept., Seite 13693-13704 volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 |
sourceStr |
Enthalten in Neural computing & applications 33(2021), 20 vom: 18. Sept., Seite 13693-13704 volume:33 year:2021 number:20 day:18 month:09 pages:13693-13704 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator. |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Huang, Shih-Gu @@aut@@ Chung, Moo K. @@aut@@ Qiu, Anqi @@aut@@ |
publishDateDaySort_date |
2021-09-18T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2077265515 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077265515</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230514121737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-021-06006-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077265515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-021-06006-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Shih-Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signals on surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chebyshev polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laguerre polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace–Beltrami operator.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung, Moo K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Anqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">33(2021), 20 vom: 18. Sept., Seite 13693-13704</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:20</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:13693-13704</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-021-06006-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2021</subfield><subfield code="e">20</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">13693-13704</subfield></datafield></record></collection>
|
author |
Huang, Shih-Gu |
spellingShingle |
Huang, Shih-Gu ddc 004 misc Graph convolutional neural network misc Signals on surfaces misc Chebyshev polynomial misc Hermite polynomial misc Laguerre polynomial misc Laplace–Beltrami operator. Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering |
authorStr |
Huang, Shih-Gu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering Graph convolutional neural network Signals on surfaces Chebyshev polynomial Hermite polynomial Laguerre polynomial Laplace–Beltrami operator |
topic |
ddc 004 misc Graph convolutional neural network misc Signals on surfaces misc Chebyshev polynomial misc Hermite polynomial misc Laguerre polynomial misc Laplace–Beltrami operator. |
topic_unstemmed |
ddc 004 misc Graph convolutional neural network misc Signals on surfaces misc Chebyshev polynomial misc Hermite polynomial misc Laguerre polynomial misc Laplace–Beltrami operator. |
topic_browse |
ddc 004 misc Graph convolutional neural network misc Signals on surfaces misc Chebyshev polynomial misc Hermite polynomial misc Laguerre polynomial misc Laplace–Beltrami operator. |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering |
ctrlnum |
(DE-627)OLC2077265515 (DE-He213)s00521-021-06006-6-p |
title_full |
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering |
author_sort |
Huang, Shih-Gu |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
13693 |
author_browse |
Huang, Shih-Gu Chung, Moo K. Qiu, Anqi |
container_volume |
33 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Huang, Shih-Gu |
doi_str_mv |
10.1007/s00521-021-06006-6 |
dewey-full |
004 |
title_sort |
revisiting convolutional neural network on graphs with polynomial approximations of laplace–beltrami spectral filtering |
title_auth |
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering |
abstract |
Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstractGer |
Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstract_unstemmed |
Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator). © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
20 |
title_short |
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering |
url |
https://doi.org/10.1007/s00521-021-06006-6 |
remote_bool |
false |
author2 |
Chung, Moo K. Qiu, Anqi |
author2Str |
Chung, Moo K. Qiu, Anqi |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-021-06006-6 |
up_date |
2024-07-03T14:38:25.946Z |
_version_ |
1803569076319027200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077265515</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230514121737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-021-06006-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077265515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-021-06006-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Shih-Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibility of Chebyshev, Laguerre, and Hermite polynomials to approximate LB-based spectral filters. We then update the LB operator for pooling in the LB-CNN. We employ the brain image data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) to demonstrate the use of the proposed LB-CNN. Based on the cortical thickness of two datasets, we showed that the LB-CNN slightly improves classification accuracy compared to the spectral graph-CNN. The three polynomials had a similar computational cost and showed comparable classification accuracy in the LB-CNN or spectral graph-CNN. The LB-CNN trained via the ADNI dataset can achieve reasonable classification accuracy for the OASIS dataset. Our findings suggest that even though the shapes of the three polynomials are different, deep learning architecture allows us to learn spectral filters such that the classification performance is not dependent on the type of the polynomials or the operators (graph Laplacian and LB operator).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signals on surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chebyshev polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermite polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laguerre polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace–Beltrami operator.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung, Moo K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Anqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">33(2021), 20 vom: 18. Sept., Seite 13693-13704</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:20</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:13693-13704</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-021-06006-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2021</subfield><subfield code="e">20</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">13693-13704</subfield></datafield></record></collection>
|
score |
7.3993244 |