Revisiting convolutional neural network on graphs with polynomial approximations of Laplace–Beltrami spectral filtering

Abstract This paper revisits spectral graph convolutional neural networks (graph-CNNs) given in Defferrard (2016) and develops the Laplace–Beltrami CNN (LB-CNN) by replacing the graph Laplacian with the LB operator. We define spectral filters via the LB operator on a graph and explore the feasibilit...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Huang, Shih-Gu [verfasserIn]

Chung, Moo K.

Qiu, Anqi

Format:

Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Graph convolutional neural network

Signals on surfaces

Chebyshev polynomial

Hermite polynomial

Laguerre polynomial

Laplace–Beltrami operator.

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Übergeordnetes Werk:

Enthalten in: Neural computing & applications - Springer London, 1993, 33(2021), 20 vom: 18. Sept., Seite 13693-13704

Übergeordnetes Werk:

volume:33 ; year:2021 ; number:20 ; day:18 ; month:09 ; pages:13693-13704

Links:

Volltext

DOI / URN:

10.1007/s00521-021-06006-6

Katalog-ID:

OLC2077265515

Nicht das Richtige dabei?

Schreiben Sie uns!