New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process
Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain inf...
Ausführliche Beschreibung
Autor*in: |
Garg, Harish [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 33(2021), 20 vom: 22. Mai, Seite 13937-13963 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2021 ; number:20 ; day:22 ; month:05 ; pages:13937-13963 |
Links: |
---|
DOI / URN: |
10.1007/s00521-021-06036-0 |
---|
Katalog-ID: |
OLC2077265647 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077265647 | ||
003 | DE-627 | ||
005 | 20230505142535.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-021-06036-0 |2 doi | |
035 | |a (DE-627)OLC2077265647 | ||
035 | |a (DE-He213)s00521-021-06036-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Garg, Harish |e verfasserin |0 (orcid)0000-0001-9099-8422 |4 aut | |
245 | 1 | 0 | |a New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 | ||
520 | |a Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. | ||
650 | 4 | |a Exponential operations laws | |
650 | 4 | |a MAGDM | |
650 | 4 | |a Exponential operational laws | |
650 | 4 | |a Aggregation operators | |
650 | 4 | |a Score function | |
650 | 4 | |a IV | |
650 | 4 | |a -ROFSs | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 33(2021), 20 vom: 22. Mai, Seite 13937-13963 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2021 |g number:20 |g day:22 |g month:05 |g pages:13937-13963 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-021-06036-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 33 |j 2021 |e 20 |b 22 |c 05 |h 13937-13963 |
author_variant |
h g hg |
---|---|
matchkey_str |
article:09410643:2021----::eepnnilprtolwadprtrfrnevlaudrnotoaruzst |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00521-021-06036-0 doi (DE-627)OLC2077265647 (DE-He213)s00521-021-06036-0-p DE-627 ger DE-627 rakwb eng 004 VZ Garg, Harish verfasserin (orcid)0000-0001-9099-8422 aut New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 22. Mai, Seite 13937-13963 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 https://doi.org/10.1007/s00521-021-06036-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 22 05 13937-13963 |
spelling |
10.1007/s00521-021-06036-0 doi (DE-627)OLC2077265647 (DE-He213)s00521-021-06036-0-p DE-627 ger DE-627 rakwb eng 004 VZ Garg, Harish verfasserin (orcid)0000-0001-9099-8422 aut New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 22. Mai, Seite 13937-13963 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 https://doi.org/10.1007/s00521-021-06036-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 22 05 13937-13963 |
allfields_unstemmed |
10.1007/s00521-021-06036-0 doi (DE-627)OLC2077265647 (DE-He213)s00521-021-06036-0-p DE-627 ger DE-627 rakwb eng 004 VZ Garg, Harish verfasserin (orcid)0000-0001-9099-8422 aut New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 22. Mai, Seite 13937-13963 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 https://doi.org/10.1007/s00521-021-06036-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 22 05 13937-13963 |
allfieldsGer |
10.1007/s00521-021-06036-0 doi (DE-627)OLC2077265647 (DE-He213)s00521-021-06036-0-p DE-627 ger DE-627 rakwb eng 004 VZ Garg, Harish verfasserin (orcid)0000-0001-9099-8422 aut New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 22. Mai, Seite 13937-13963 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 https://doi.org/10.1007/s00521-021-06036-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 22 05 13937-13963 |
allfieldsSound |
10.1007/s00521-021-06036-0 doi (DE-627)OLC2077265647 (DE-He213)s00521-021-06036-0-p DE-627 ger DE-627 rakwb eng 004 VZ Garg, Harish verfasserin (orcid)0000-0001-9099-8422 aut New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs Enthalten in Neural computing & applications Springer London, 1993 33(2021), 20 vom: 22. Mai, Seite 13937-13963 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 https://doi.org/10.1007/s00521-021-06036-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 20 22 05 13937-13963 |
language |
English |
source |
Enthalten in Neural computing & applications 33(2021), 20 vom: 22. Mai, Seite 13937-13963 volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 |
sourceStr |
Enthalten in Neural computing & applications 33(2021), 20 vom: 22. Mai, Seite 13937-13963 volume:33 year:2021 number:20 day:22 month:05 pages:13937-13963 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Garg, Harish @@aut@@ |
publishDateDaySort_date |
2021-05-22T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2077265647 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077265647</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505142535.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-021-06036-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077265647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-021-06036-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garg, Harish</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9099-8422</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential operations laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MAGDM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential operational laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aggregation operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Score function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IV</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-ROFSs</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">33(2021), 20 vom: 22. Mai, Seite 13937-13963</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:20</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:13937-13963</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-021-06036-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2021</subfield><subfield code="e">20</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">13937-13963</subfield></datafield></record></collection>
|
author |
Garg, Harish |
spellingShingle |
Garg, Harish ddc 004 misc Exponential operations laws misc MAGDM misc Exponential operational laws misc Aggregation operators misc Score function misc IV misc -ROFSs New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
authorStr |
Garg, Harish |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process Exponential operations laws MAGDM Exponential operational laws Aggregation operators Score function IV -ROFSs |
topic |
ddc 004 misc Exponential operations laws misc MAGDM misc Exponential operational laws misc Aggregation operators misc Score function misc IV misc -ROFSs |
topic_unstemmed |
ddc 004 misc Exponential operations laws misc MAGDM misc Exponential operational laws misc Aggregation operators misc Score function misc IV misc -ROFSs |
topic_browse |
ddc 004 misc Exponential operations laws misc MAGDM misc Exponential operational laws misc Aggregation operators misc Score function misc IV misc -ROFSs |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
ctrlnum |
(DE-627)OLC2077265647 (DE-He213)s00521-021-06036-0-p |
title_full |
New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
author_sort |
Garg, Harish |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
13937 |
author_browse |
Garg, Harish |
container_volume |
33 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Garg, Harish |
doi_str_mv |
10.1007/s00521-021-06036-0 |
normlink |
(ORCID)0000-0001-9099-8422 |
normlink_prefix_str_mv |
(orcid)0000-0001-9099-8422 |
dewey-full |
004 |
title_sort |
new exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
title_auth |
New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
abstract |
Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstractGer |
Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstract_unstemmed |
Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
20 |
title_short |
New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process |
url |
https://doi.org/10.1007/s00521-021-06036-0 |
remote_bool |
false |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-021-06036-0 |
up_date |
2024-07-03T14:38:30.378Z |
_version_ |
1803569080966316032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077265647</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505142535.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-021-06036-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077265647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-021-06036-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garg, Harish</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9099-8422</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper aims to introduce the novel concept of q-connection number (q-CN) for interval-valued q-rung orthopair fuzzy set (IVq-ROFSs) and thus to develop a method for solving the multiple-attribute group decision making (MAGDM) problem. The IVq-ROFS is a tool to represent the uncertain information with an integer parameter $$q\ge 1$$, while the connection number (CN) processes the uncertainties and certainties into a single system with three degrees, namely “identity”, “contrary” and “discrepancy”. Driven by these required properties, this paper introduces a q-CN for IVq-ROFSs to represent the information in a more concise way. To this end, we divide the paper into three aspects. First, we define q-CN and a scoring function to evaluate the numbers. Second, we give some new q-exponential operation laws (q-EOLs) and operators over q-CNs in which bases are real numbers and exponents are q-CNs. Moreover, we define an operator based on these laws and derive their properties. Third, a novel MAGDM method for solving decision problems with IVq-ROFS information is illustrated with several examples. The advantages and superiority analysis of the proposed framework are also given to assert the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential operations laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MAGDM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential operational laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aggregation operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Score function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IV</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-ROFSs</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">33(2021), 20 vom: 22. Mai, Seite 13937-13963</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:20</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:13937-13963</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-021-06036-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2021</subfield><subfield code="e">20</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">13937-13963</subfield></datafield></record></collection>
|
score |
7.4009123 |