International Conference on Advanced and Competitive Manufacturing Technologies milling tool wear prediction using unsupervised machine learning

Abstract Degraded or defect machine components and consumables negatively impact manufacturing quality and productivity. Diagnosing and predicting the wear or degradation status of critical machine components or parts are therefore of general interest. To tackle this challenge, data-driven approache...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Gittler, Thomas [verfasserIn]

Glasder, Magnus

Öztürk, Elif

Lüthi, Michel

Weiss, Lukas

Wegener, Konrad

Format:

Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Condition monitoring

Machine learning

Prognostics and health monitoring

Unsupervised learning

Machine tools

Manufacturing

Milling

Tool wear

Anmerkung:

© The Author(s) 2021

Übergeordnetes Werk:

Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 117(2021), 7-8 vom: 24. Mai, Seite 2213-2226

Übergeordnetes Werk:

volume:117 ; year:2021 ; number:7-8 ; day:24 ; month:05 ; pages:2213-2226

Links:

Volltext

DOI / URN:

10.1007/s00170-021-07281-2

Katalog-ID:

OLC2077360356

Nicht das Richtige dabei?

Schreiben Sie uns!