Grain flash temperatures in diamond wire sawing of silicon
Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, rese...
Ausführliche Beschreibung
Autor*in: |
Pala, Uygar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 |
---|---|
Übergeordnetes Werk: |
volume:117 ; year:2021 ; number:7-8 ; day:11 ; month:06 ; pages:2227-2236 |
Links: |
---|
DOI / URN: |
10.1007/s00170-021-07298-7 |
---|
Katalog-ID: |
OLC2077360380 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077360380 | ||
003 | DE-627 | ||
005 | 20230505144303.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-021-07298-7 |2 doi | |
035 | |a (DE-627)OLC2077360380 | ||
035 | |a (DE-He213)s00170-021-07298-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Pala, Uygar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Grain flash temperatures in diamond wire sawing of silicon |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. | ||
650 | 4 | |a Flash temperature | |
650 | 4 | |a Silicon | |
650 | 4 | |a Wire sawing | |
650 | 4 | |a Single-grain scratching | |
650 | 4 | |a Wear | |
700 | 1 | |a Süssmaier, Stefan |4 aut | |
700 | 1 | |a Wegener, Konrad |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:117 |g year:2021 |g number:7-8 |g day:11 |g month:06 |g pages:2227-2236 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-021-07298-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 117 |j 2021 |e 7-8 |b 11 |c 06 |h 2227-2236 |
author_variant |
u p up s s ss k w kw |
---|---|
matchkey_str |
article:02683768:2021----::rifaheprtrsnimnwrs |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00170-021-07298-7 doi (DE-627)OLC2077360380 (DE-He213)s00170-021-07298-7-p DE-627 ger DE-627 rakwb eng 670 VZ Pala, Uygar verfasserin aut Grain flash temperatures in diamond wire sawing of silicon 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. Flash temperature Silicon Wire sawing Single-grain scratching Wear Süssmaier, Stefan aut Wegener, Konrad aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 https://doi.org/10.1007/s00170-021-07298-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 117 2021 7-8 11 06 2227-2236 |
spelling |
10.1007/s00170-021-07298-7 doi (DE-627)OLC2077360380 (DE-He213)s00170-021-07298-7-p DE-627 ger DE-627 rakwb eng 670 VZ Pala, Uygar verfasserin aut Grain flash temperatures in diamond wire sawing of silicon 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. Flash temperature Silicon Wire sawing Single-grain scratching Wear Süssmaier, Stefan aut Wegener, Konrad aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 https://doi.org/10.1007/s00170-021-07298-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 117 2021 7-8 11 06 2227-2236 |
allfields_unstemmed |
10.1007/s00170-021-07298-7 doi (DE-627)OLC2077360380 (DE-He213)s00170-021-07298-7-p DE-627 ger DE-627 rakwb eng 670 VZ Pala, Uygar verfasserin aut Grain flash temperatures in diamond wire sawing of silicon 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. Flash temperature Silicon Wire sawing Single-grain scratching Wear Süssmaier, Stefan aut Wegener, Konrad aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 https://doi.org/10.1007/s00170-021-07298-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 117 2021 7-8 11 06 2227-2236 |
allfieldsGer |
10.1007/s00170-021-07298-7 doi (DE-627)OLC2077360380 (DE-He213)s00170-021-07298-7-p DE-627 ger DE-627 rakwb eng 670 VZ Pala, Uygar verfasserin aut Grain flash temperatures in diamond wire sawing of silicon 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. Flash temperature Silicon Wire sawing Single-grain scratching Wear Süssmaier, Stefan aut Wegener, Konrad aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 https://doi.org/10.1007/s00170-021-07298-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 117 2021 7-8 11 06 2227-2236 |
allfieldsSound |
10.1007/s00170-021-07298-7 doi (DE-627)OLC2077360380 (DE-He213)s00170-021-07298-7-p DE-627 ger DE-627 rakwb eng 670 VZ Pala, Uygar verfasserin aut Grain flash temperatures in diamond wire sawing of silicon 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. Flash temperature Silicon Wire sawing Single-grain scratching Wear Süssmaier, Stefan aut Wegener, Konrad aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 https://doi.org/10.1007/s00170-021-07298-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 117 2021 7-8 11 06 2227-2236 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 117(2021), 7-8 vom: 11. Juni, Seite 2227-2236 volume:117 year:2021 number:7-8 day:11 month:06 pages:2227-2236 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flash temperature Silicon Wire sawing Single-grain scratching Wear |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Pala, Uygar @@aut@@ Süssmaier, Stefan @@aut@@ Wegener, Konrad @@aut@@ |
publishDateDaySort_date |
2021-06-11T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2077360380 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077360380</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505144303.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-021-07298-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077360380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-021-07298-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pala, Uygar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grain flash temperatures in diamond wire sawing of silicon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flash temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wire sawing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-grain scratching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wear</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Süssmaier, Stefan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wegener, Konrad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">117(2021), 7-8 vom: 11. Juni, Seite 2227-2236</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:117</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7-8</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2227-2236</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-021-07298-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">117</subfield><subfield code="j">2021</subfield><subfield code="e">7-8</subfield><subfield code="b">11</subfield><subfield code="c">06</subfield><subfield code="h">2227-2236</subfield></datafield></record></collection>
|
author |
Pala, Uygar |
spellingShingle |
Pala, Uygar ddc 670 misc Flash temperature misc Silicon misc Wire sawing misc Single-grain scratching misc Wear Grain flash temperatures in diamond wire sawing of silicon |
authorStr |
Pala, Uygar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Grain flash temperatures in diamond wire sawing of silicon Flash temperature Silicon Wire sawing Single-grain scratching Wear |
topic |
ddc 670 misc Flash temperature misc Silicon misc Wire sawing misc Single-grain scratching misc Wear |
topic_unstemmed |
ddc 670 misc Flash temperature misc Silicon misc Wire sawing misc Single-grain scratching misc Wear |
topic_browse |
ddc 670 misc Flash temperature misc Silicon misc Wire sawing misc Single-grain scratching misc Wear |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Grain flash temperatures in diamond wire sawing of silicon |
ctrlnum |
(DE-627)OLC2077360380 (DE-He213)s00170-021-07298-7-p |
title_full |
Grain flash temperatures in diamond wire sawing of silicon |
author_sort |
Pala, Uygar |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2227 |
author_browse |
Pala, Uygar Süssmaier, Stefan Wegener, Konrad |
container_volume |
117 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Pala, Uygar |
doi_str_mv |
10.1007/s00170-021-07298-7 |
dewey-full |
670 |
title_sort |
grain flash temperatures in diamond wire sawing of silicon |
title_auth |
Grain flash temperatures in diamond wire sawing of silicon |
abstract |
Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. © The Author(s) 2021 |
abstractGer |
Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. © The Author(s) 2021 |
abstract_unstemmed |
Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
7-8 |
title_short |
Grain flash temperatures in diamond wire sawing of silicon |
url |
https://doi.org/10.1007/s00170-021-07298-7 |
remote_bool |
false |
author2 |
Süssmaier, Stefan Wegener, Konrad |
author2Str |
Süssmaier, Stefan Wegener, Konrad |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-021-07298-7 |
up_date |
2024-07-03T15:08:38.514Z |
_version_ |
1803570976931184640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077360380</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505144303.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-021-07298-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077360380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-021-07298-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pala, Uygar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grain flash temperatures in diamond wire sawing of silicon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Diamond wire sawing has obtained 90% of the single-crystal silicon–based photovoltaic market, mainly for its high production efficiency, high wafer quality, and low tool wear. The diamond wire wear is strongly influenced by the temperatures in the grain-workpiece contact zone; and yet, research studies on experimental investigations and modeling are currently lacking. In this direction, a temperature model is developed for the evaluation of the flash temperatures at the grain tip with respect to the grain penetration depth. An experimental single-grain scratch test setup is designed to validate the model that can emulate the long contact lengths as in the wire sawing process, at high speeds. Furthermore, the influence of brittle and ductile material removal modes on cutting zone temperatures is evaluated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flash temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wire sawing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-grain scratching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wear</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Süssmaier, Stefan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wegener, Konrad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">117(2021), 7-8 vom: 11. Juni, Seite 2227-2236</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:117</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7-8</subfield><subfield code="g">day:11</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2227-2236</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-021-07298-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">117</subfield><subfield code="j">2021</subfield><subfield code="e">7-8</subfield><subfield code="b">11</subfield><subfield code="c">06</subfield><subfield code="h">2227-2236</subfield></datafield></record></collection>
|
score |
7.4021635 |