Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits
Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a no...
Ausführliche Beschreibung
Autor*in: |
Motazedifard, Ali [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Spontaneous parametric down-conversion (SPDC) |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Optical and quantum electronics - Springer US, 1975, 53(2021), 7 vom: Juli |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2021 ; number:7 ; month:07 |
Links: |
---|
DOI / URN: |
10.1007/s11082-021-03067-8 |
---|
Katalog-ID: |
OLC2077454881 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077454881 | ||
003 | DE-627 | ||
005 | 20230505150356.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11082-021-03067-8 |2 doi | |
035 | |a (DE-627)OLC2077454881 | ||
035 | |a (DE-He213)s11082-021-03067-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 620 |q VZ |
100 | 1 | |a Motazedifard, Ali |e verfasserin |0 (orcid)0000-0002-3537-565X |4 aut | |
245 | 1 | 0 | |a Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 | ||
520 | |a Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. | ||
650 | 4 | |a Spontaneous parametric down-conversion (SPDC) | |
650 | 4 | |a Polarization-entanglement | |
650 | 4 | |a Quantum state tomography (QST) | |
650 | 4 | |a Entropy | |
700 | 1 | |a Madani, Seyed Ahmad |4 aut | |
700 | 1 | |a Vayaghan, N. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical and quantum electronics |d Springer US, 1975 |g 53(2021), 7 vom: Juli |w (DE-627)129419540 |w (DE-600)189950-8 |w (DE-576)014796139 |x 0306-8919 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2021 |g number:7 |g month:07 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11082-021-03067-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
951 | |a AR | ||
952 | |d 53 |j 2021 |e 7 |c 07 |
author_variant |
a m am s a m sa sam n s v ns nsv |
---|---|
matchkey_str |
article:03068919:2021----::esrmnoetoynqatmoeecpoeteotoyee |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11082-021-03067-8 doi (DE-627)OLC2077454881 (DE-He213)s11082-021-03067-8-p DE-627 ger DE-627 rakwb eng 500 620 VZ Motazedifard, Ali verfasserin (orcid)0000-0002-3537-565X aut Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy Madani, Seyed Ahmad aut Vayaghan, N. S. aut Enthalten in Optical and quantum electronics Springer US, 1975 53(2021), 7 vom: Juli (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:53 year:2021 number:7 month:07 https://doi.org/10.1007/s11082-021-03067-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 53 2021 7 07 |
spelling |
10.1007/s11082-021-03067-8 doi (DE-627)OLC2077454881 (DE-He213)s11082-021-03067-8-p DE-627 ger DE-627 rakwb eng 500 620 VZ Motazedifard, Ali verfasserin (orcid)0000-0002-3537-565X aut Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy Madani, Seyed Ahmad aut Vayaghan, N. S. aut Enthalten in Optical and quantum electronics Springer US, 1975 53(2021), 7 vom: Juli (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:53 year:2021 number:7 month:07 https://doi.org/10.1007/s11082-021-03067-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 53 2021 7 07 |
allfields_unstemmed |
10.1007/s11082-021-03067-8 doi (DE-627)OLC2077454881 (DE-He213)s11082-021-03067-8-p DE-627 ger DE-627 rakwb eng 500 620 VZ Motazedifard, Ali verfasserin (orcid)0000-0002-3537-565X aut Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy Madani, Seyed Ahmad aut Vayaghan, N. S. aut Enthalten in Optical and quantum electronics Springer US, 1975 53(2021), 7 vom: Juli (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:53 year:2021 number:7 month:07 https://doi.org/10.1007/s11082-021-03067-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 53 2021 7 07 |
allfieldsGer |
10.1007/s11082-021-03067-8 doi (DE-627)OLC2077454881 (DE-He213)s11082-021-03067-8-p DE-627 ger DE-627 rakwb eng 500 620 VZ Motazedifard, Ali verfasserin (orcid)0000-0002-3537-565X aut Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy Madani, Seyed Ahmad aut Vayaghan, N. S. aut Enthalten in Optical and quantum electronics Springer US, 1975 53(2021), 7 vom: Juli (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:53 year:2021 number:7 month:07 https://doi.org/10.1007/s11082-021-03067-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 53 2021 7 07 |
allfieldsSound |
10.1007/s11082-021-03067-8 doi (DE-627)OLC2077454881 (DE-He213)s11082-021-03067-8-p DE-627 ger DE-627 rakwb eng 500 620 VZ Motazedifard, Ali verfasserin (orcid)0000-0002-3537-565X aut Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy Madani, Seyed Ahmad aut Vayaghan, N. S. aut Enthalten in Optical and quantum electronics Springer US, 1975 53(2021), 7 vom: Juli (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:53 year:2021 number:7 month:07 https://doi.org/10.1007/s11082-021-03067-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 53 2021 7 07 |
language |
English |
source |
Enthalten in Optical and quantum electronics 53(2021), 7 vom: Juli volume:53 year:2021 number:7 month:07 |
sourceStr |
Enthalten in Optical and quantum electronics 53(2021), 7 vom: Juli volume:53 year:2021 number:7 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Optical and quantum electronics |
authorswithroles_txt_mv |
Motazedifard, Ali @@aut@@ Madani, Seyed Ahmad @@aut@@ Vayaghan, N. S. @@aut@@ |
publishDateDaySort_date |
2021-07-01T00:00:00Z |
hierarchy_top_id |
129419540 |
dewey-sort |
3500 |
id |
OLC2077454881 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077454881</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505150356.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-021-03067-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077454881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-021-03067-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Motazedifard, Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3537-565X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spontaneous parametric down-conversion (SPDC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization-entanglement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum state tomography (QST)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madani, Seyed Ahmad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vayaghan, N. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">53(2021), 7 vom: Juli</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-021-03067-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2021</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Motazedifard, Ali |
spellingShingle |
Motazedifard, Ali ddc 500 misc Spontaneous parametric down-conversion (SPDC) misc Polarization-entanglement misc Quantum state tomography (QST) misc Entropy Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits |
authorStr |
Motazedifard, Ali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129419540 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0306-8919 |
topic_title |
500 620 VZ Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits Spontaneous parametric down-conversion (SPDC) Polarization-entanglement Quantum state tomography (QST) Entropy |
topic |
ddc 500 misc Spontaneous parametric down-conversion (SPDC) misc Polarization-entanglement misc Quantum state tomography (QST) misc Entropy |
topic_unstemmed |
ddc 500 misc Spontaneous parametric down-conversion (SPDC) misc Polarization-entanglement misc Quantum state tomography (QST) misc Entropy |
topic_browse |
ddc 500 misc Spontaneous parametric down-conversion (SPDC) misc Polarization-entanglement misc Quantum state tomography (QST) misc Entropy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optical and quantum electronics |
hierarchy_parent_id |
129419540 |
dewey-tens |
500 - Science 620 - Engineering |
hierarchy_top_title |
Optical and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 |
title |
Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits |
ctrlnum |
(DE-627)OLC2077454881 (DE-He213)s11082-021-03067-8-p |
title_full |
Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits |
author_sort |
Motazedifard, Ali |
journal |
Optical and quantum electronics |
journalStr |
Optical and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Motazedifard, Ali Madani, Seyed Ahmad Vayaghan, N. S. |
container_volume |
53 |
class |
500 620 VZ |
format_se |
Aufsätze |
author-letter |
Motazedifard, Ali |
doi_str_mv |
10.1007/s11082-021-03067-8 |
normlink |
(ORCID)0000-0002-3537-565X |
normlink_prefix_str_mv |
(orcid)0000-0002-3537-565X |
dewey-full |
500 620 |
title_sort |
measurement of entropy and quantum coherence properties of two type-i entangled photonic qubits |
title_auth |
Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits |
abstract |
Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 |
abstractGer |
Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 |
abstract_unstemmed |
Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab. © Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY |
container_issue |
7 |
title_short |
Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits |
url |
https://doi.org/10.1007/s11082-021-03067-8 |
remote_bool |
false |
author2 |
Madani, Seyed Ahmad Vayaghan, N. S. |
author2Str |
Madani, Seyed Ahmad Vayaghan, N. S. |
ppnlink |
129419540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11082-021-03067-8 |
up_date |
2024-07-03T15:39:03.702Z |
_version_ |
1803572890782662656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077454881</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505150356.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-021-03067-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077454881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-021-03067-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Motazedifard, Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3537-565X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. corrected publication 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using the type-I SPDC process in BBO nonlinear crystal, we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility (high-brightness) 98.50 ± 1.33% (87.71 ± 4.45%) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory, S = 2.71 ± 0.10. Via measuring the coincidence count rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors around (25.5 ± 3.4)%, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique, which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy. Finally, this high-brightness and low-rate entangled photons source can be used for short-range quantum measurements in the Lab.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spontaneous parametric down-conversion (SPDC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polarization-entanglement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum state tomography (QST)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madani, Seyed Ahmad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vayaghan, N. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">53(2021), 7 vom: Juli</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-021-03067-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2021</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4011116 |