Transcendence of infinite series over lattices
Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\...
Ausführliche Beschreibung
Autor*in: |
Pathak, Siddhi S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The Ramanujan journal - Springer US, 1997, 56(2021), 3 vom: 19. Apr., Seite 971-992 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2021 ; number:3 ; day:19 ; month:04 ; pages:971-992 |
Links: |
---|
DOI / URN: |
10.1007/s11139-021-00420-z |
---|
Katalog-ID: |
OLC2077464690 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077464690 | ||
003 | DE-627 | ||
005 | 20230505150358.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11139-021-00420-z |2 doi | |
035 | |a (DE-627)OLC2077464690 | ||
035 | |a (DE-He213)s11139-021-00420-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 7,24 |2 ssgn | ||
100 | 1 | |a Pathak, Siddhi S. |e verfasserin |0 (orcid)0000-0003-3123-4013 |4 aut | |
245 | 1 | 0 | |a Transcendence of infinite series over lattices |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. | ||
650 | 4 | |a Elliptic functions | |
650 | 4 | |a Transcendence of infinite series | |
650 | 4 | |a Lattice sums | |
773 | 0 | 8 | |i Enthalten in |t The Ramanujan journal |d Springer US, 1997 |g 56(2021), 3 vom: 19. Apr., Seite 971-992 |w (DE-627)234141301 |w (DE-600)1394097-1 |w (DE-576)100004989 |x 1382-4090 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2021 |g number:3 |g day:19 |g month:04 |g pages:971-992 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11139-021-00420-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ANG | ||
951 | |a AR | ||
952 | |d 56 |j 2021 |e 3 |b 19 |c 04 |h 971-992 |
author_variant |
s s p ss ssp |
---|---|
matchkey_str |
article:13824090:2021----::rncnecoifntsreo |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11139-021-00420-z doi (DE-627)OLC2077464690 (DE-He213)s11139-021-00420-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Pathak, Siddhi S. verfasserin (orcid)0000-0003-3123-4013 aut Transcendence of infinite series over lattices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. Elliptic functions Transcendence of infinite series Lattice sums Enthalten in The Ramanujan journal Springer US, 1997 56(2021), 3 vom: 19. Apr., Seite 971-992 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:56 year:2021 number:3 day:19 month:04 pages:971-992 https://doi.org/10.1007/s11139-021-00420-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 56 2021 3 19 04 971-992 |
spelling |
10.1007/s11139-021-00420-z doi (DE-627)OLC2077464690 (DE-He213)s11139-021-00420-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Pathak, Siddhi S. verfasserin (orcid)0000-0003-3123-4013 aut Transcendence of infinite series over lattices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. Elliptic functions Transcendence of infinite series Lattice sums Enthalten in The Ramanujan journal Springer US, 1997 56(2021), 3 vom: 19. Apr., Seite 971-992 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:56 year:2021 number:3 day:19 month:04 pages:971-992 https://doi.org/10.1007/s11139-021-00420-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 56 2021 3 19 04 971-992 |
allfields_unstemmed |
10.1007/s11139-021-00420-z doi (DE-627)OLC2077464690 (DE-He213)s11139-021-00420-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Pathak, Siddhi S. verfasserin (orcid)0000-0003-3123-4013 aut Transcendence of infinite series over lattices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. Elliptic functions Transcendence of infinite series Lattice sums Enthalten in The Ramanujan journal Springer US, 1997 56(2021), 3 vom: 19. Apr., Seite 971-992 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:56 year:2021 number:3 day:19 month:04 pages:971-992 https://doi.org/10.1007/s11139-021-00420-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 56 2021 3 19 04 971-992 |
allfieldsGer |
10.1007/s11139-021-00420-z doi (DE-627)OLC2077464690 (DE-He213)s11139-021-00420-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Pathak, Siddhi S. verfasserin (orcid)0000-0003-3123-4013 aut Transcendence of infinite series over lattices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. Elliptic functions Transcendence of infinite series Lattice sums Enthalten in The Ramanujan journal Springer US, 1997 56(2021), 3 vom: 19. Apr., Seite 971-992 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:56 year:2021 number:3 day:19 month:04 pages:971-992 https://doi.org/10.1007/s11139-021-00420-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 56 2021 3 19 04 971-992 |
allfieldsSound |
10.1007/s11139-021-00420-z doi (DE-627)OLC2077464690 (DE-He213)s11139-021-00420-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Pathak, Siddhi S. verfasserin (orcid)0000-0003-3123-4013 aut Transcendence of infinite series over lattices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. Elliptic functions Transcendence of infinite series Lattice sums Enthalten in The Ramanujan journal Springer US, 1997 56(2021), 3 vom: 19. Apr., Seite 971-992 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:56 year:2021 number:3 day:19 month:04 pages:971-992 https://doi.org/10.1007/s11139-021-00420-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 56 2021 3 19 04 971-992 |
language |
English |
source |
Enthalten in The Ramanujan journal 56(2021), 3 vom: 19. Apr., Seite 971-992 volume:56 year:2021 number:3 day:19 month:04 pages:971-992 |
sourceStr |
Enthalten in The Ramanujan journal 56(2021), 3 vom: 19. Apr., Seite 971-992 volume:56 year:2021 number:3 day:19 month:04 pages:971-992 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Elliptic functions Transcendence of infinite series Lattice sums |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The Ramanujan journal |
authorswithroles_txt_mv |
Pathak, Siddhi S. @@aut@@ |
publishDateDaySort_date |
2021-04-19T00:00:00Z |
hierarchy_top_id |
234141301 |
dewey-sort |
3510 |
id |
OLC2077464690 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077464690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505150358.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-021-00420-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077464690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-021-00420-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pathak, Siddhi S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3123-4013</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transcendence of infinite series over lattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcendence of infinite series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice sums</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">56(2021), 3 vom: 19. Apr., Seite 971-992</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:971-992</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-021-00420-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">971-992</subfield></datafield></record></collection>
|
author |
Pathak, Siddhi S. |
spellingShingle |
Pathak, Siddhi S. ddc 510 ssgn 7,24 misc Elliptic functions misc Transcendence of infinite series misc Lattice sums Transcendence of infinite series over lattices |
authorStr |
Pathak, Siddhi S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234141301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-4090 |
topic_title |
510 VZ 7,24 ssgn Transcendence of infinite series over lattices Elliptic functions Transcendence of infinite series Lattice sums |
topic |
ddc 510 ssgn 7,24 misc Elliptic functions misc Transcendence of infinite series misc Lattice sums |
topic_unstemmed |
ddc 510 ssgn 7,24 misc Elliptic functions misc Transcendence of infinite series misc Lattice sums |
topic_browse |
ddc 510 ssgn 7,24 misc Elliptic functions misc Transcendence of infinite series misc Lattice sums |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The Ramanujan journal |
hierarchy_parent_id |
234141301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The Ramanujan journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 |
title |
Transcendence of infinite series over lattices |
ctrlnum |
(DE-627)OLC2077464690 (DE-He213)s11139-021-00420-z-p |
title_full |
Transcendence of infinite series over lattices |
author_sort |
Pathak, Siddhi S. |
journal |
The Ramanujan journal |
journalStr |
The Ramanujan journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
971 |
author_browse |
Pathak, Siddhi S. |
container_volume |
56 |
class |
510 VZ 7,24 ssgn |
format_se |
Aufsätze |
author-letter |
Pathak, Siddhi S. |
doi_str_mv |
10.1007/s11139-021-00420-z |
normlink |
(ORCID)0000-0003-3123-4013 |
normlink_prefix_str_mv |
(orcid)0000-0003-3123-4013 |
dewey-full |
510 |
title_sort |
transcendence of infinite series over lattices |
title_auth |
Transcendence of infinite series over lattices |
abstract |
Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG |
container_issue |
3 |
title_short |
Transcendence of infinite series over lattices |
url |
https://doi.org/10.1007/s11139-021-00420-z |
remote_bool |
false |
ppnlink |
234141301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11139-021-00420-z |
up_date |
2024-07-03T15:42:25.562Z |
_version_ |
1803573102466039808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077464690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505150358.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-021-00420-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077464690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-021-00420-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pathak, Siddhi S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3123-4013</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transcendence of infinite series over lattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we study the arithmetic nature of series of the form ∑ω∈ΛA(ω)B(ω),$$\begin{aligned} \sum _{\omega \in \Lambda } \frac{A(\omega )}{B(\omega )}, \end{aligned}$$where $$\Lambda $$ is a two-dimensional lattice in $${\mathbb {C}}$$, A(X) and B(X) are suitable polynomials over $${\mathbb {C}}$$, with $$\deg A$$$$\le $$$$\deg B - 3$$. In particular, we focus on the cases when the roots of the polynomial B(X) are either algebraic numbers or rational multiples of a non-zero period of $$\Lambda $$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcendence of infinite series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice sums</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">56(2021), 3 vom: 19. Apr., Seite 971-992</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:971-992</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-021-00420-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">971-992</subfield></datafield></record></collection>
|
score |
7.3988447 |