The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM
Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and con...
Ausführliche Beschreibung
Autor*in: |
Chen, Long [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Bulletin of engineering geology and the environment - Springer Berlin Heidelberg, 1998, 81(2021), 1 vom: 21. Dez. |
---|---|
Übergeordnetes Werk: |
volume:81 ; year:2021 ; number:1 ; day:21 ; month:12 |
Links: |
---|
DOI / URN: |
10.1007/s10064-021-02530-w |
---|
Katalog-ID: |
OLC2077664800 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077664800 | ||
003 | DE-627 | ||
005 | 20230505205706.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10064-021-02530-w |2 doi | |
035 | |a (DE-627)OLC2077664800 | ||
035 | |a (DE-He213)s10064-021-02530-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 600 |q VZ |
100 | 1 | |a Chen, Long |e verfasserin |4 aut | |
245 | 1 | 0 | |a The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. | ||
650 | 4 | |a Zonal disintegration | |
650 | 4 | |a Discrete element method | |
650 | 4 | |a Deep jointed rock mass | |
650 | 4 | |a Flat-joint model | |
650 | 4 | |a Smooth-joint model | |
650 | 4 | |a Deep tunnel | |
700 | 1 | |a Wu, Shunchuan |4 aut | |
700 | 1 | |a Jin, Aibing |4 aut | |
700 | 1 | |a Li, Xue |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Bulletin of engineering geology and the environment |d Springer Berlin Heidelberg, 1998 |g 81(2021), 1 vom: 21. Dez. |w (DE-627)24891880X |w (DE-600)1444574-8 |w (DE-576)068745818 |x 1435-9529 |7 nnns |
773 | 1 | 8 | |g volume:81 |g year:2021 |g number:1 |g day:21 |g month:12 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10064-021-02530-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
951 | |a AR | ||
952 | |d 81 |j 2021 |e 1 |b 21 |c 12 |
author_variant |
l c lc s w sw a j aj x l xl |
---|---|
matchkey_str |
article:14359529:2021----::heouineuaiynifuneatrnlssfoadsnertoaondejitd |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10064-021-02530-w doi (DE-627)OLC2077664800 (DE-He213)s10064-021-02530-w-p DE-627 ger DE-627 rakwb eng 550 600 VZ Chen, Long verfasserin aut The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel Wu, Shunchuan aut Jin, Aibing aut Li, Xue aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 81(2021), 1 vom: 21. Dez. (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:81 year:2021 number:1 day:21 month:12 https://doi.org/10.1007/s10064-021-02530-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 81 2021 1 21 12 |
spelling |
10.1007/s10064-021-02530-w doi (DE-627)OLC2077664800 (DE-He213)s10064-021-02530-w-p DE-627 ger DE-627 rakwb eng 550 600 VZ Chen, Long verfasserin aut The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel Wu, Shunchuan aut Jin, Aibing aut Li, Xue aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 81(2021), 1 vom: 21. Dez. (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:81 year:2021 number:1 day:21 month:12 https://doi.org/10.1007/s10064-021-02530-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 81 2021 1 21 12 |
allfields_unstemmed |
10.1007/s10064-021-02530-w doi (DE-627)OLC2077664800 (DE-He213)s10064-021-02530-w-p DE-627 ger DE-627 rakwb eng 550 600 VZ Chen, Long verfasserin aut The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel Wu, Shunchuan aut Jin, Aibing aut Li, Xue aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 81(2021), 1 vom: 21. Dez. (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:81 year:2021 number:1 day:21 month:12 https://doi.org/10.1007/s10064-021-02530-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 81 2021 1 21 12 |
allfieldsGer |
10.1007/s10064-021-02530-w doi (DE-627)OLC2077664800 (DE-He213)s10064-021-02530-w-p DE-627 ger DE-627 rakwb eng 550 600 VZ Chen, Long verfasserin aut The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel Wu, Shunchuan aut Jin, Aibing aut Li, Xue aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 81(2021), 1 vom: 21. Dez. (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:81 year:2021 number:1 day:21 month:12 https://doi.org/10.1007/s10064-021-02530-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 81 2021 1 21 12 |
allfieldsSound |
10.1007/s10064-021-02530-w doi (DE-627)OLC2077664800 (DE-He213)s10064-021-02530-w-p DE-627 ger DE-627 rakwb eng 550 600 VZ Chen, Long verfasserin aut The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel Wu, Shunchuan aut Jin, Aibing aut Li, Xue aut Enthalten in Bulletin of engineering geology and the environment Springer Berlin Heidelberg, 1998 81(2021), 1 vom: 21. Dez. (DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 1435-9529 nnns volume:81 year:2021 number:1 day:21 month:12 https://doi.org/10.1007/s10064-021-02530-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO AR 81 2021 1 21 12 |
language |
English |
source |
Enthalten in Bulletin of engineering geology and the environment 81(2021), 1 vom: 21. Dez. volume:81 year:2021 number:1 day:21 month:12 |
sourceStr |
Enthalten in Bulletin of engineering geology and the environment 81(2021), 1 vom: 21. Dez. volume:81 year:2021 number:1 day:21 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Bulletin of engineering geology and the environment |
authorswithroles_txt_mv |
Chen, Long @@aut@@ Wu, Shunchuan @@aut@@ Jin, Aibing @@aut@@ Li, Xue @@aut@@ |
publishDateDaySort_date |
2021-12-21T00:00:00Z |
hierarchy_top_id |
24891880X |
dewey-sort |
3550 |
id |
OLC2077664800 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077664800</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505205706.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10064-021-02530-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077664800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10064-021-02530-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zonal disintegration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep jointed rock mass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flat-joint model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth-joint model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep tunnel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Shunchuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Aibing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of engineering geology and the environment</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">81(2021), 1 vom: 21. Dez.</subfield><subfield code="w">(DE-627)24891880X</subfield><subfield code="w">(DE-600)1444574-8</subfield><subfield code="w">(DE-576)068745818</subfield><subfield code="x">1435-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10064-021-02530-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Chen, Long |
spellingShingle |
Chen, Long ddc 550 misc Zonal disintegration misc Discrete element method misc Deep jointed rock mass misc Flat-joint model misc Smooth-joint model misc Deep tunnel The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM |
authorStr |
Chen, Long |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)24891880X |
format |
Article |
dewey-ones |
550 - Earth sciences 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1435-9529 |
topic_title |
550 600 VZ The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM Zonal disintegration Discrete element method Deep jointed rock mass Flat-joint model Smooth-joint model Deep tunnel |
topic |
ddc 550 misc Zonal disintegration misc Discrete element method misc Deep jointed rock mass misc Flat-joint model misc Smooth-joint model misc Deep tunnel |
topic_unstemmed |
ddc 550 misc Zonal disintegration misc Discrete element method misc Deep jointed rock mass misc Flat-joint model misc Smooth-joint model misc Deep tunnel |
topic_browse |
ddc 550 misc Zonal disintegration misc Discrete element method misc Deep jointed rock mass misc Flat-joint model misc Smooth-joint model misc Deep tunnel |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Bulletin of engineering geology and the environment |
hierarchy_parent_id |
24891880X |
dewey-tens |
550 - Earth sciences & geology 600 - Technology |
hierarchy_top_title |
Bulletin of engineering geology and the environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)24891880X (DE-600)1444574-8 (DE-576)068745818 |
title |
The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM |
ctrlnum |
(DE-627)OLC2077664800 (DE-He213)s10064-021-02530-w-p |
title_full |
The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM |
author_sort |
Chen, Long |
journal |
Bulletin of engineering geology and the environment |
journalStr |
Bulletin of engineering geology and the environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Chen, Long Wu, Shunchuan Jin, Aibing Li, Xue |
container_volume |
81 |
class |
550 600 VZ |
format_se |
Aufsätze |
author-letter |
Chen, Long |
doi_str_mv |
10.1007/s10064-021-02530-w |
dewey-full |
550 600 |
title_sort |
the evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on dem |
title_auth |
The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM |
abstract |
Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. © Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. © Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon. © Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO |
container_issue |
1 |
title_short |
The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM |
url |
https://doi.org/10.1007/s10064-021-02530-w |
remote_bool |
false |
author2 |
Wu, Shunchuan Jin, Aibing Li, Xue |
author2Str |
Wu, Shunchuan Jin, Aibing Li, Xue |
ppnlink |
24891880X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10064-021-02530-w |
up_date |
2024-07-03T16:41:41.288Z |
_version_ |
1803576830892965888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077664800</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505205706.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10064-021-02530-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077664800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10064-021-02530-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Long</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The evolution regularity and influence factor analysis of zonal disintegration around deep jointed rock mass: a numerical study based on DEM</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on the engineering background of the diversion auxiliary tunnel at the Jinping II Hydropower Station, the discrete element method and the particle flow code theory are used to construct a jointed rock mass model. This model fully reflects the joint distribution characteristics and considers the effects of micro-fracturing. The generation and evolution of the zonal disintegration phenomenon are discussed in detail. The numerical results show the same fracture characteristics as the on-site ultrasonic tests. It is indicated that the type of micro-fracture is mainly tensile, but the direction of the extension of the fracture zones is dominated by shear micro-fractures. The root cause of the zonal disintegration of the rock surrounding the tunnel is that the existence of joints makes the internal strength distribution of the rock mass uneven, and the expansion direction of the fracture zone around the tunnel then becomes circumferential. The trace length and spacing of the joints have an influence on the shape and size of the fracture zones. For unbonded joints, the friction coefficient of the smooth-joint model affects the number and locations of the fracture zones. For bonded joints, the cohesion strength of the smooth-joint model has a significant effect on the zonal disintegration of the rock. The results in this paper provide a benchmark for further investigations of the zonal disintegration phenomenon.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zonal disintegration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep jointed rock mass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flat-joint model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth-joint model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep tunnel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Shunchuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Aibing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of engineering geology and the environment</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">81(2021), 1 vom: 21. Dez.</subfield><subfield code="w">(DE-627)24891880X</subfield><subfield code="w">(DE-600)1444574-8</subfield><subfield code="w">(DE-576)068745818</subfield><subfield code="x">1435-9529</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10064-021-02530-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.4010353 |