$$L^p$$ maximal estimates for quadratic Weyl sums
Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the...
Ausführliche Beschreibung
Autor*in: |
Baker, R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica Hungarica - Springer International Publishing, 1983, 165(2021), 2 vom: 03. Sept., Seite 316-325 |
---|---|
Übergeordnetes Werk: |
volume:165 ; year:2021 ; number:2 ; day:03 ; month:09 ; pages:316-325 |
Links: |
---|
DOI / URN: |
10.1007/s10474-021-01173-3 |
---|
Katalog-ID: |
OLC2077665033 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077665033 | ||
003 | DE-627 | ||
005 | 20230505184932.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10474-021-01173-3 |2 doi | |
035 | |a (DE-627)OLC2077665033 | ||
035 | |a (DE-He213)s10474-021-01173-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Baker, R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a $$L^p$$ maximal estimates for quadratic Weyl sums |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2021 | ||
520 | |a Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. | ||
773 | 0 | 8 | |i Enthalten in |t Acta mathematica Hungarica |d Springer International Publishing, 1983 |g 165(2021), 2 vom: 03. Sept., Seite 316-325 |w (DE-627)130395986 |w (DE-600)602393-9 |w (DE-576)015898156 |x 0001-5954 |7 nnns |
773 | 1 | 8 | |g volume:165 |g year:2021 |g number:2 |g day:03 |g month:09 |g pages:316-325 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10474-021-01173-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 165 |j 2021 |e 2 |b 03 |c 09 |h 316-325 |
author_variant |
r b rb |
---|---|
matchkey_str |
article:00015954:2021----::paiaetmtsoqar |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10474-021-01173-3 doi (DE-627)OLC2077665033 (DE-He213)s10474-021-01173-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Baker, R. verfasserin aut $$L^p$$ maximal estimates for quadratic Weyl sums 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2021 Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. Enthalten in Acta mathematica Hungarica Springer International Publishing, 1983 165(2021), 2 vom: 03. Sept., Seite 316-325 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:165 year:2021 number:2 day:03 month:09 pages:316-325 https://doi.org/10.1007/s10474-021-01173-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 165 2021 2 03 09 316-325 |
spelling |
10.1007/s10474-021-01173-3 doi (DE-627)OLC2077665033 (DE-He213)s10474-021-01173-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Baker, R. verfasserin aut $$L^p$$ maximal estimates for quadratic Weyl sums 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2021 Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. Enthalten in Acta mathematica Hungarica Springer International Publishing, 1983 165(2021), 2 vom: 03. Sept., Seite 316-325 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:165 year:2021 number:2 day:03 month:09 pages:316-325 https://doi.org/10.1007/s10474-021-01173-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 165 2021 2 03 09 316-325 |
allfields_unstemmed |
10.1007/s10474-021-01173-3 doi (DE-627)OLC2077665033 (DE-He213)s10474-021-01173-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Baker, R. verfasserin aut $$L^p$$ maximal estimates for quadratic Weyl sums 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2021 Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. Enthalten in Acta mathematica Hungarica Springer International Publishing, 1983 165(2021), 2 vom: 03. Sept., Seite 316-325 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:165 year:2021 number:2 day:03 month:09 pages:316-325 https://doi.org/10.1007/s10474-021-01173-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 165 2021 2 03 09 316-325 |
allfieldsGer |
10.1007/s10474-021-01173-3 doi (DE-627)OLC2077665033 (DE-He213)s10474-021-01173-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Baker, R. verfasserin aut $$L^p$$ maximal estimates for quadratic Weyl sums 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2021 Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. Enthalten in Acta mathematica Hungarica Springer International Publishing, 1983 165(2021), 2 vom: 03. Sept., Seite 316-325 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:165 year:2021 number:2 day:03 month:09 pages:316-325 https://doi.org/10.1007/s10474-021-01173-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 165 2021 2 03 09 316-325 |
allfieldsSound |
10.1007/s10474-021-01173-3 doi (DE-627)OLC2077665033 (DE-He213)s10474-021-01173-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Baker, R. verfasserin aut $$L^p$$ maximal estimates for quadratic Weyl sums 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2021 Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. Enthalten in Acta mathematica Hungarica Springer International Publishing, 1983 165(2021), 2 vom: 03. Sept., Seite 316-325 (DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 0001-5954 nnns volume:165 year:2021 number:2 day:03 month:09 pages:316-325 https://doi.org/10.1007/s10474-021-01173-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 165 2021 2 03 09 316-325 |
language |
English |
source |
Enthalten in Acta mathematica Hungarica 165(2021), 2 vom: 03. Sept., Seite 316-325 volume:165 year:2021 number:2 day:03 month:09 pages:316-325 |
sourceStr |
Enthalten in Acta mathematica Hungarica 165(2021), 2 vom: 03. Sept., Seite 316-325 volume:165 year:2021 number:2 day:03 month:09 pages:316-325 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica Hungarica |
authorswithroles_txt_mv |
Baker, R. @@aut@@ |
publishDateDaySort_date |
2021-09-03T00:00:00Z |
hierarchy_top_id |
130395986 |
dewey-sort |
3510 |
id |
OLC2077665033 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077665033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505184932.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10474-021-01173-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077665033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10474-021-01173-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baker, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">$$L^p$$ maximal estimates for quadratic Weyl sums</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica Hungarica</subfield><subfield code="d">Springer International Publishing, 1983</subfield><subfield code="g">165(2021), 2 vom: 03. Sept., Seite 316-325</subfield><subfield code="w">(DE-627)130395986</subfield><subfield code="w">(DE-600)602393-9</subfield><subfield code="w">(DE-576)015898156</subfield><subfield code="x">0001-5954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:316-325</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10474-021-01173-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield><subfield code="h">316-325</subfield></datafield></record></collection>
|
author |
Baker, R. |
spellingShingle |
Baker, R. ddc 510 ssgn 17,1 $$L^p$$ maximal estimates for quadratic Weyl sums |
authorStr |
Baker, R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130395986 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5954 |
topic_title |
510 VZ 17,1 ssgn $$L^p$$ maximal estimates for quadratic Weyl sums |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica Hungarica |
hierarchy_parent_id |
130395986 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica Hungarica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130395986 (DE-600)602393-9 (DE-576)015898156 |
title |
$$L^p$$ maximal estimates for quadratic Weyl sums |
ctrlnum |
(DE-627)OLC2077665033 (DE-He213)s10474-021-01173-3-p |
title_full |
$$L^p$$ maximal estimates for quadratic Weyl sums |
author_sort |
Baker, R. |
journal |
Acta mathematica Hungarica |
journalStr |
Acta mathematica Hungarica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
316 |
author_browse |
Baker, R. |
container_volume |
165 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Baker, R. |
doi_str_mv |
10.1007/s10474-021-01173-3 |
dewey-full |
510 |
title_sort |
$$l^p$$ maximal estimates for quadratic weyl sums |
title_auth |
$$L^p$$ maximal estimates for quadratic Weyl sums |
abstract |
Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. © Akadémiai Kiadó, Budapest, Hungary 2021 |
abstractGer |
Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. © Akadémiai Kiadó, Budapest, Hungary 2021 |
abstract_unstemmed |
Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude. © Akadémiai Kiadó, Budapest, Hungary 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
2 |
title_short |
$$L^p$$ maximal estimates for quadratic Weyl sums |
url |
https://doi.org/10.1007/s10474-021-01173-3 |
remote_bool |
false |
ppnlink |
130395986 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10474-021-01173-3 |
up_date |
2024-07-03T16:41:45.069Z |
_version_ |
1803576834857631744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077665033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505184932.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10474-021-01173-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077665033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10474-021-01173-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baker, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">$$L^p$$ maximal estimates for quadratic Weyl sums</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $$p \ge 1$$. We give upper and lower bounds for Mp(N):=‖sup0≤t≤1|∑n=1Ne(nx+n2t)|‖Lp[0,1]p$$\begin{aligned} {M}_{p}(N): = \bigg \Vert \mathop {\mathrm{sup}}\limits _{0 \le t \le 1} \bigg | {\sum _{n=1}^N} {e}(nx + n^{2}t)\bigg |\bigg \Vert _{L^{p}[0,1]}^{p} \end{aligned}$$that are of the same order of magnitude.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica Hungarica</subfield><subfield code="d">Springer International Publishing, 1983</subfield><subfield code="g">165(2021), 2 vom: 03. Sept., Seite 316-325</subfield><subfield code="w">(DE-627)130395986</subfield><subfield code="w">(DE-600)602393-9</subfield><subfield code="w">(DE-576)015898156</subfield><subfield code="x">0001-5954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:316-325</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10474-021-01173-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield><subfield code="h">316-325</subfield></datafield></record></collection>
|
score |
7.401106 |